Forked from
agnumpde / dune-tectonic
157 commits ahead of the upstream repository.
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
truncation.py 3.43 KiB
import configparser as cp
import os
import numpy as np
import csv
import h5py
import matplotlib.pyplot as plt
from debug.outliers import outliers
from debug.friction import truncated_friction
from debug.state import aging_law
from debug.diffplot import diffplot
from support.maximum import maximum
from support.norm import norm
from support.find_quakes import find_quakes
from support.slip_beginnings import slip_beginnings
from support.slip_endings import slip_endings
from support.max_distance import max_distance
from support.io import read_h5file
from support.io import read_params
from support.iterations import iterations
from support.friction_stats import friction_stats
def build_time(h5file, final_time, interval = []):
# read time
time = np.array(h5file['relativeTime']) * FINAL_TIME
time = np.delete(time, 0)
if len(interval) == 0:
interval = [0, FINAL_TIME]
t = [i for i in range(len(time)) if time[i]>=interval[0] and time[i]<=interval[1]]
return t, time[t]
def build_patch(coords, percentage = 1.0):
x_coords = coords[:, 0]
xmin = np.min(x_coords)
xmax = np.max(x_coords)
delta_x = (1 - percentage)*(xmax - xmin)/2
xmin = xmin + delta_x
xmax = xmax - delta_x
return [i for i in range(len(x_coords)) if x_coords[i]>=xmin and x_coords[i]<=xmax]
# read h5 output file
h5file = read_h5file()
print(list(h5file.keys()))
# read problem parameters
params = read_params('foam.cfg')
print(params)
TANGENTIAL_COORDS = 1
FINAL_TIME = params['finalTime']
NBODIES = params['bodyCount']
t, time = build_time(h5file, FINAL_TIME, [0, FINAL_TIME])
for body_ID in range(NBODIES):
body = 'body' + str(body_ID)
if body not in h5file:
continue
coords = np.array(h5file[body + '/coordinates'])
patch = build_patch(coords, 1.0)
fig = plt.figure()
# velocity and state data
v = abs(np.array(h5file[body + '/velocity']))[:,:,TANGENTIAL_COORDS]
alpha = np.array(h5file[body + '/state'])
vmin = 0 #params['V0'] / np.exp( ( params['mu0'] + params['b'] * np.array(alpha)) / params['a'] )
v_truncation = (v<=vmin)[t,:]
v_truncated = np.sum(v_truncation, axis=1)
v_comp = (np.abs(v-vmin)<1e-14)[t,:]
v_small = np.sum(v_comp, axis=1)
weighted_normal_stress = np.array(h5file[body + '/weightedNormalStress'])
second_deriv_large = (v<0)[t,:] #((- weighted_normal_stress[None, ...] * params['a'] / v)>1e10)[0,t,:]
second_deriv = np.sum(second_deriv_large, axis=1)
total_truncated = np.sum(v_truncation | v_comp | second_deriv_large, axis=1)
# plot v_small
ax_v_small = fig.add_subplot(4, 1, 1)
ax_v_small.plot(time, v_small, color='black', linestyle='-')
ax_v_small.set_ylabel('# v-vmin < 1e-14')
#-------------------------
# plot v_truncated
ax_v_truncated = fig.add_subplot(4, 1, 2 )
ax_v_truncated.plot(time, v_truncated, color='black', linestyle='-')
ax_v_truncated.set_ylabel('# v <= vmin')
#-------------------------
# plot second_deriv_large
ax_second_deriv = fig.add_subplot(4, 1, 3)
ax_second_deriv.plot(time, second_deriv, color='black', linestyle='-')
ax_second_deriv.set_ylabel('# second_deriv large')
#-------------------------
# plot total_truncated
ax_truncated = fig.add_subplot(4, 1, 4)
ax_truncated.plot(time, total_truncated, color='black', linestyle='-')
ax_truncated.set_ylabel('# total truncated')
#-------------------------
plt.show()
h5file.close()