Forked from
agnumpde / dune-tectonic
1281 commits behind the upstream repository.
-
Elias Pipping authoredElias Pipping authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
samplefunctional.hh 6.26 KiB
/* -*- mode:c++; mode:semantic -*- */
#ifndef SAMPLE_FUNCTIONAL_HH
#define SAMPLE_FUNCTIONAL_HH
#include <dune/common/fmatrix.hh>
#include <dune/common/fvector.hh>
#include <dune/common/stdstreams.hh>
#include <dune/fufem/interval.hh>
#include <dune/tnnmg/problem-classes/bisection.hh>
#include <dune/tnnmg/problem-classes/directionalconvexfunction.hh>
#include "localnonlinearity.hh"
namespace Dune {
template <int dim> class SampleFunctional {
public:
typedef FieldVector<double, dim> SmallVector;
typedef FieldMatrix<double, dim, dim> SmallMatrix;
typedef LocalNonlinearity<dim> NonlinearityType;
SampleFunctional(SmallMatrix const &A, SmallVector const &b,
NonlinearityType const &phi)
: A(A), b(b), phi(phi) {}
double operator()(SmallVector const &v) const {
SmallVector y;
A.mv(v, y); // y = Av
y /= 2; // y = 1/2 Av
y -= b; // y = 1/2 Av - b
return y * v + phi(v); // <1/2 Av - b,v> + H(|v|)
}
void descentDirection(SmallVector const x, SmallVector &ret) const {
// Check the squared norm rather than each component because
// complementaryProjection() divides by it
if (x.two_norm2() == 0.0) {
// If there is a direction of descent, this is it
SmallVector d;
smoothGradient(x, d);
Interval<double> D;
phi.directionalSubDiff(x, d, D);
double const nonlinearDecline = D[1];
double const smoothDecline = -(d * d);
double const combinedDecline = smoothDecline + nonlinearDecline;
if (combinedDecline < 0) {
ret = d;
ret *= -1;
} else {
ret = 0;
}
return;
}
SmallVector pg;
upperGradient(x, pg);
SmallVector mg;
lowerGradient(x, mg);
double const pgx = pg * x;
double const mgx = mg * x;
if (pgx >= 0 && mgx >= 0) {
ret = pg;
dverb << "## Directional derivative (as per scalar product w/ "
"semigradient): " << -(ret * mg)
<< " (coordinates of the restriction)" << std::endl;
} else if (pgx <= 0 && mgx <= 0) {
ret = mg;
dverb << "## Directional derivative (as per scalar product w/ "
"semigradient): " << -(ret * pg)
<< " (coordinates of the restriction)" << std::endl;
} else {
// Includes the case that pg points in direction x and mg
// points in direction -x. The projection will then be zero.
SmallVector d;
smoothGradient(x, d);
complementaryProjection(d, x, ret);
dverb << "## Directional derivative (as per scalar product w/ "
"semigradient): " << -(ret * ret)
<< " (coordinates of the restriction)" << std::endl;
}
ret *= -1;
}
SmallMatrix const &A;
SmallVector const &b;
NonlinearityType const φ
private:
// Gradient of the smooth part
void smoothGradient(SmallVector const &x, SmallVector &y) const {
A.mv(x, y); // y = Av
y -= b; // y = Av - b
}
void upperGradient(SmallVector const &x, SmallVector &y) const {
phi.upperGradient(x, y);
SmallVector z;
smoothGradient(x, z);
y += z;
}
void lowerGradient(SmallVector const &x, SmallVector &y) const {
phi.lowerGradient(x, y);
SmallVector z;
smoothGradient(x, z);
y += z;
}
// y = (id - P)(d) where P is the projection onto the line t*x
void complementaryProjection(SmallVector const &d, SmallVector const &x,
SmallVector &y) const {
double const dx = d * x;
double const xx = x.two_norm2();
y = d;
y.axpy(-dx / xx, x);
}
};
template <class Functional>
void minimise(Functional const J, typename Functional::SmallVector &x,
size_t steps = 1,
Bisection const &bisection =
Bisection(0.0, // acceptError: Stop if the search interval has
// become smaller than this number
1.0, // acceptFactor: ?
1e-12, // requiredResidual: ?
true, // fastQuadratic
0)) // safety: acceptance factor for inexact
// minimization
{
typedef typename Functional::SmallVector SmallVector;
for (size_t step = 0; step < steps; ++step) {
SmallVector descDir;
J.descentDirection(x, descDir);
if (descDir == SmallVector(0.0))
return;
// {{{ Construct a restriction of J to the line x + t * descDir
/* We have
1/2 <A(u+xv),u+xv>-<b,u+xv> = 1/2 <Av,v> x^2 - <b-Au,v> x + <1/2 Au-b,u>
since A is symmetric.
*/
SmallVector tmp;
J.A.mv(descDir, tmp); // Av
double const JRestA = tmp * descDir; // <Av,v>
tmp = J.b; // b
J.A.mmv(x, tmp); // b-Au
double const JRestb = tmp * descDir; // <b-Au,v>
typedef typename Functional::NonlinearityType LocalNonlinearityType;
LocalNonlinearityType phi = J.phi;
typedef DirectionalConvexFunction<LocalNonlinearityType>
MyDirectionalConvexFunctionType;
// FIXME: We cannot pass J.phi directly because the constructor
// does not allow for constant arguments
MyDirectionalConvexFunctionType JRest(JRestA, JRestb, phi, x, descDir);
// }}}
{ // Debug
Interval<double> D;
JRest.subDiff(0, D);
dverb << "## Directional derivative (as per subdifferential of "
"restriction): " << D[1] << " (coordinates of the restriction)"
<< std::endl;
/*
It is possible that this differs quite a lot from the
directional derivative computed in the descentDirection()
method:
If phi is nonsmooth at x, so that the directional
derivatives jump, and |x| is computed to be too small or too
large globally or locally, the locally computed
subdifferential and the globally computed subdifferential
will no longer coincide!
The assertion D[1] <= 0 may thus fail.
*/
}
int count;
// FIXME: The value of x_old should not matter if the factor is 1.0,
// correct?
double const stepsize = bisection.minimize(JRest, 0.0, 1.0, count);
dverb << "Number of iterations in the bisection method: " << count
<< std::endl;
;
x.axpy(stepsize, descDir);
}
}
}
#endif