Forked from
agnumpde / dune-tectonic
22 commits ahead of the upstream repository.
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
fixedpointiterator.cc 12.95 KiB
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <dune/common/exceptions.hh>
#include <dune/matrix-vector/axpy.hh>
#include <dune/solvers/norms/energynorm.hh>
#include <dune/solvers/solvers/loopsolver.hh>
#include <dune/contact/assemblers/nbodyassembler.hh>
#include <dune/contact/common/dualbasisadapter.hh>
#include <dune/localfunctions/lagrange/pqkfactory.hh>
#include <dune/functions/gridfunctions/gridfunction.hh>
#include <dune/geometry/quadraturerules.hh>
#include <dune/geometry/type.hh>
#include <dune/geometry/referenceelements.hh>
#include <dune/fufem/functions/basisgridfunction.hh>
#include "../enums.hh"
#include "../enumparser.hh"
#include "fixedpointiterator.hh"
void FixedPointIterationCounter::operator+=(
FixedPointIterationCounter const &other) {
iterations += other.iterations;
multigridIterations += other.multigridIterations;
}
template <class Factory, class Updaters, class ErrorNorm>
FixedPointIterator<Factory, Updaters, ErrorNorm>::FixedPointIterator(
Factory &factory, Dune::ParameterTree const &parset,
std::vector<std::shared_ptr<Nonlinearity>>& globalFriction, const std::vector<const ErrorNorm* >& errorNorms)
: factory_(factory),
step_(factory_.getStep()),
parset_(parset),
globalFriction_(globalFriction),
fixedPointMaxIterations_(parset.get<size_t>("v.fpi.maximumIterations")),
fixedPointTolerance_(parset.get<double>("v.fpi.tolerance")),
lambda_(parset.get<double>("v.fpi.lambda")),
velocityMaxIterations_(parset.get<size_t>("v.solver.maximumIterations")),
velocityTolerance_(parset.get<double>("v.solver.tolerance")),
verbosity_(parset.get<Solver::VerbosityMode>("v.solver.verbosity")),
errorNorms_(errorNorms) {}
template <class Factory, class Updaters, class ErrorNorm>
FixedPointIterationCounter
FixedPointIterator<Factory, Updaters, ErrorNorm>::run(
Updaters updaters, const std::vector<Matrix>& velocityMatrices, const std::vector<Vector>& velocityRHSs,
std::vector<Vector>& velocityIterates) {
auto contactAssembler = factory_.getNBodyAssembler();
Matrix mat;
std::vector<const Matrix*> matrices_ptr(velocityMatrices.size());
for (size_t i=0; i<matrices_ptr.size(); i++) {
matrices_ptr[i] = &velocityMatrices[i];
}
contactAssembler.assembleJacobian(matrices_ptr, mat);
EnergyNorm<Matrix, Vector> energyNorm(mat);
LoopSolver<Vector> velocityProblemSolver(step_.get(), velocityMaxIterations_,
velocityTolerance_, &energyNorm,
verbosity_, false); // absolute error
size_t fixedPointIteration;
size_t multigridIterations = 0;
std::vector<ScalarVector> alpha;
updaters.state_->extractAlpha(alpha);
for (fixedPointIteration = 0; fixedPointIteration < fixedPointMaxIterations_;
++fixedPointIteration) {
// compute relative velocities
std::vector<Vector> v_rel;
relativeVelocities(velocityIterates, v_rel);
// contribution from nonlinearity
for (size_t i=0; i<alpha.size(); i++) {
globalFriction_[i]->updateAlpha(alpha[i]);
}
std::vector<Matrix> matrices(velocityMatrices.size());
std::vector<Vector> rhs(velocityRHSs.size());
for (size_t i=0; i<globalFriction_.size(); i++) {
matrices[i] = velocityMatrices[i];
rhs[i] = velocityRHSs[i];
globalFriction_[i]->addHessian(v_rel[i], matrices[i]);
globalFriction_[i]->addGradient(v_rel[i], rhs[i]);
matrices_ptr[i] = &matrices[i];
}
// assemble full global contact problem
Matrix bilinearForm;
contactAssembler.assembleJacobian(matrices_ptr, bilinearForm);
Vector totalRhs;
contactAssembler.assembleRightHandSide(rhs, totalRhs);
Vector totalVelocityIterate;
contactAssembler.nodalToTransformed(velocityIterates, totalVelocityIterate);
// solve a velocity problem
step_->setProblem(bilinearForm, totalVelocityIterate, totalRhs);
velocityProblemSolver.preprocess();
velocityProblemSolver.solve();
contactAssembler.postprocess(totalVelocityIterate, velocityIterates);
multigridIterations += velocityProblemSolver.getResult().iterations;
std::vector<Vector> v_m;
updaters.rate_->extractOldVelocity(v_m);
for (size_t i=0; i<v_m.size(); i++) {
v_m[i] *= 1.0 - lambda_;
Dune::MatrixVector::addProduct(v_m[i], lambda_, velocityIterates[i]);
}
// compute relative velocities on contact boundaries
relativeVelocities(v_m, v_rel);
// solve a state problem
updaters.state_->solve(v_rel);
std::vector<ScalarVector> newAlpha;
updaters.state_->extractAlpha(newAlpha);
bool breakCriterion = true;
for (size_t i=0; i<alpha.size(); i++) {
if (errorNorms_[i]->diff(alpha[i], newAlpha[i]) >= fixedPointTolerance_) {
breakCriterion = false;
break;
}
}
if (lambda_ < 1e-12 or breakCriterion) {
fixedPointIteration++;
break;
}
alpha = newAlpha;
}
if (fixedPointIteration == fixedPointMaxIterations_)
DUNE_THROW(Dune::Exception, "FPI failed to converge");
updaters.rate_->postProcess(velocityIterates);
// Cannot use return { fixedPointIteration, multigridIterations };
// with gcc 4.9.2, see also http://stackoverflow.com/a/37777814/179927
FixedPointIterationCounter ret;
ret.iterations = fixedPointIteration;
ret.multigridIterations = multigridIterations;
return ret;
}
std::ostream &operator<<(std::ostream &stream,
FixedPointIterationCounter const &fpic) {
return stream << "(" << fpic.iterations << "," << fpic.multigridIterations
<< ")";
}
template <class Factory, class Updaters, class ErrorNorm>
void FixedPointIterator<Factory, Updaters, ErrorNorm>::relativeVelocities(const std::vector<Vector>& v, std::vector<Vector>& v_rel) const {
// init result
v_rel.resize(v.size());
for (size_t i=0; i<v_rel.size(); i++) {
v_rel[i].resize(v[i].size());
v_rel[i] = 0;
}
// needs assemblers to obtain basis
/*
std::vector<std::shared_ptr<MyAssembler>> assemblers(bodyCount);
using field_type = typename Factory::Matrix::field_type;
// adaptation of DualMortarCoupling::setup()
const size_t dim = DeformedGrid::dimension;
typedef typename DeformedGrid::LeafGridView GridView;
//cache of local bases
typedef Dune::PQkLocalFiniteElementCache<typename DeformedGrid::ctype, field_type, dim,1> FiniteElementCache1;
FiniteElementCache1 cache1;
// cache for the dual functions on the boundary
using DualCache = Dune::Contact::DualBasisAdapter<GridView, field_type>;
std::unique_ptr<DualCache> dualCache;
dualCache = std::make_unique< Dune::Contact::DualBasisAdapterGlobal<GridView, field_type> >();
// define FE grid functions
std::vector<BasisGridFunction<VertexBasis, Vector>* > gridFunctions(v_m.size());
for (size_t i=0; i<gridFunctions.size(); i++) {
gridFunctions[i] = new BasisGridFunction<MyAssembler::VertexBasis, Vector>(assemblers[i]->vertexBasis, v_m[i]);
}
*/
/*
for (size_t i=0; i<nBodyAssembler_.nCouplings(); i++) {
const auto& coupling = nBodyAssembler_.getCoupling(i);
auto glue = coupling.backend();
const std::array<int, 2> gridIdx = coupling.gridIdx_;
const int nonmortarGridIdx = ;
const int mortarGridIdx = ;
// loop over all intersections
for (const auto& rIs : intersections(glue)) {
const auto& inside = rIs.inside();
if (!nonmortarBoundary_.contains(rIs.inside(),rIs.indexInInside()))
continue;
const auto& outside = rIs.outside();
// types of the elements supporting the boundary segments in question
Dune::GeometryType nonmortarEType = inside.type();
Dune::GeometryType mortarEType = outside.type();
const auto& domainRefElement = Dune::ReferenceElements<ctype, dim>::general(nonmortarEType);
const auto& targetRefElement = Dune::ReferenceElements<ctype, dim>::general(mortarEType);
int noOfMortarVec = targetRefElement.size(dim);
Dune::GeometryType nmFaceType = domainRefElement.type(rIs.indexInInside(),1);
Dune::GeometryType mFaceType = targetRefElement.type(rIs.indexInOutside(),1);
// Select a quadrature rule
// 2 in 2d and for integration over triangles in 3d. If one (or both) of the two faces involved
// are quadrilaterals, then the quad order has to be risen to 3 (4).
int quadOrder = 2 + (!nmFaceType.isSimplex()) + (!mFaceType.isSimplex());
const auto& quadRule = Dune::QuadratureRules<ctype, dim-1>::rule(rIs.type(), quadOrder);
const auto& mortarFiniteElement = cache1.get(mortarEType);
dualCache->bind(inside, rIs.indexInInside());
std::vector<Dune::FieldVector<field_type,1> > mortarQuadValues, dualQuadValues;
const auto& rGeom = rIs.geometry();
const auto& rGeomOutside = rIs.geometryOutside();
const auto& rGeomInInside = rIs.geometryInInside();
const auto& rGeomInOutside = rIs.geometryInOutside();
int nNonmortarFaceNodes = domainRefElement.size(rIs.indexInInside(),1,dim);
std::vector<int> nonmortarFaceNodes;
for (int i=0; i<nNonmortarFaceNodes; i++) {
int faceIdxi = domainRefElement.subEntity(rIs.indexInInside(), 1, i, dim);
nonmortarFaceNodes.push_back(faceIdxi);
}
for (const auto& quadPt : quadRule) {
// compute integration element of overlap
ctype integrationElement = rGeom.integrationElement(quadPt.position());
// quadrature point positions on the reference element
Dune::FieldVector<ctype,dim> nonmortarQuadPos = rGeomInInside.global(quadPt.position());
Dune::FieldVector<ctype,dim> mortarQuadPos = rGeomInOutside.global(quadPt.position());
// The current quadrature point in world coordinates
Dune::FieldVector<field_type,dim> nonmortarQpWorld = rGeom.global(quadPt.position());
Dune::FieldVector<field_type,dim> mortarQpWorld = rGeomOutside.global(quadPt.position());;
// the gap direction (normal * gapValue)
Dune::FieldVector<field_type,dim> gapVector = mortarQpWorld - nonmortarQpWorld;
//evaluate all shapefunctions at the quadrature point
//nonmortarFiniteElement.localBasis().evaluateFunction(nonmortarQuadPos,nonmortarQuadValues);
mortarFiniteElement.localBasis().evaluateFunction(mortarQuadPos,mortarQuadValues);
dualCache->evaluateFunction(nonmortarQuadPos,dualQuadValues);
// loop over all Lagrange multiplier shape functions
for (int j=0; j<nNonmortarFaceNodes; j++) {
int globalDomainIdx = indexSet0.subIndex(inside,nonmortarFaceNodes[j],dim);
int rowIdx = globalToLocal[globalDomainIdx];
weakObstacle_[rowIdx][0] += integrationElement * quadPt.weight()
* dualQuadValues[nonmortarFaceNodes[j]] * (gapVector*avNormals[globalDomainIdx]);
// loop over all mortar shape functions
for (int k=0; k<noOfMortarVec; k++) {
int colIdx = indexSet1.subIndex(outside, k, dim);
if (!mortarBoundary_.containsVertex(colIdx))
continue;
// Integrate over the product of two shape functions
field_type mortarEntry = integrationElement* quadPt.weight()* dualQuadValues[nonmortarFaceNodes[j]]* mortarQuadValues[k];
Dune::MatrixVector::addToDiagonal(mortarLagrangeMatrix_[rowIdx][colIdx], mortarEntry);
}
}
}
}
// Create mapping from the global set of block dofs to the ones on the contact boundary
std::vector<int> globalToLocal;
nonmortarBoundary_.makeGlobalToLocal(globalToLocal);
// loop over all intersections
for (const auto& rIs : intersections(glue)) {
if (!nonmortarBoundary_.contains(rIs.inside(),rIs.indexInInside()))
continue;
const auto& inside = rIs.inside();
const auto& outside = rIs.outside();
const auto& domainRefElement = Dune::ReferenceElements<ctype, dim>::general(inside.type());
const auto& targetRefElement = Dune::ReferenceElements<ctype, dim>::general(outside.type());
int nDomainVertices = domainRefElement.size(dim);
int nTargetVertices = targetRefElement.size(dim);
for (int j=0; j<nDomainVertices; j++) {
int localDomainIdx = globalToLocal[indexSet0.subIndex(inside,j,dim)];
// if the vertex is not contained in the restricted contact boundary then dismiss it
if (localDomainIdx == -1)
continue;
for (int k=0; k<nTargetVertices; k++) {
int globalTargetIdx = indexSet1.subIndex(outside,k,dim);
if (!mortarBoundary_.containsVertex(globalTargetIdx))
continue;
mortarIndices.add(localDomainIdx, globalTargetIdx);
}
}
}
*/
}
#include "fixedpointiterator_tmpl.cc"