Skip to content
Snippets Groups Projects
Commit 17e659f0 authored by Elias Pipping's avatar Elias Pipping Committed by Elias Pipping
Browse files

Document newmark scheme for the state

parent ac33ab32
Branches
No related tags found
No related merge requests found
\documentclass{scrartcl}
\usepackage{amsmath}
\begin{document}
\noindent The Newmark scheme in its classical form with $\gamma = 1/2$
and $\beta = 1/4$ reads
\begin{align}
\label{eq:1} \dot \alpha_1
&= \dot \alpha_0 + \frac \tau 2 (\ddot \alpha_0 + \ddot \alpha_1 )\\
\label{eq:2} \alpha_1
&= \alpha_0 + \tau \dot \alpha_0 + \frac {\tau^2}4 ( \ddot \alpha_0 + \ddot \alpha_1 )\text.
\intertext{We can also write \eqref{eq:2} as}
\nonumber \ddot \alpha_1 + \ddot \alpha_0
&= \frac 4{\tau^2} ( \alpha_1 - \alpha_0 - \tau \dot \alpha_0)
\intertext{so that it yields}
\label{eq:3} \dot \alpha_1
&= \dot \alpha_0 + \frac 2\tau ( \alpha_1 - \alpha_0 - \tau \dot \alpha_0) = \frac 2\tau ( \alpha_1 - \alpha_0) - \dot \alpha_0
\end{align}
in conjunction with \eqref{eq:1}. The problem
\begin{align*}
-\dot \alpha_1 \in \partial \psi(\alpha_1)
\end{align*}
then becomes
\begin{align*}
\dot \alpha_0 -\frac 2\tau ( \alpha_1 - \alpha_0)
&\in \partial \psi(\alpha_1)\\
\psi(\beta) - \psi(\alpha_1)
&\ge (\dot \alpha_0 -\frac 2\tau ( \alpha_1 - \alpha_0), \beta - \alpha_1)
\quad \forall \beta\\
\frac 2\tau ( \alpha_1, \beta - \alpha_1) + \psi(\beta) - \psi(\alpha_1)
&\ge (\dot \alpha_0 + \frac 2\tau \alpha_0, \beta - \alpha_1)
\quad \forall \beta
\end{align*}
After which $\dot \alpha_1$ can be computed according to \eqref{eq:3}.
\end{document}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment