Skip to content
Snippets Groups Projects
Commit 22498e27 authored by Elias Pipping's avatar Elias Pipping Committed by Elias Pipping
Browse files

Add TrivialNonlinearity class

parent 8b60d867
No related branches found
No related tags found
No related merge requests found
/* -*- mode:c++; mode:semantic -*- */
#ifndef TRIVIALNONLINEARITY_HH
#define TRIVIALNONLINEARITY_HH
#include <dune/tnnmg/problem-classes/nonlinearity.hh>
template <class LocalVectorTypeTEMPLATE = Dune::FieldVector<double, 1>,
class LocalMatrixTypeTEMPLATE = Dune::FieldMatrix<double, 1, 1>>
class TrivialNonlinearity
: Nonlinearity<LocalVectorTypeTEMPLATE, LocalMatrixTypeTEMPLATE> {
public:
typedef typename Nonlinearity<LocalVectorTypeTEMPLATE,
LocalMatrixTypeTEMPLATE>::IndexSet IndexSet;
typedef typename Nonlinearity<LocalVectorTypeTEMPLATE,
LocalMatrixTypeTEMPLATE>::LocalVectorType
LocalVectorType;
typedef typename Nonlinearity<LocalVectorTypeTEMPLATE,
LocalMatrixTypeTEMPLATE>::MatrixType MatrixType;
typedef typename Nonlinearity<LocalVectorTypeTEMPLATE,
LocalMatrixTypeTEMPLATE>::VectorType VectorType;
enum {
block_size = Nonlinearity<LocalVectorTypeTEMPLATE,
LocalMatrixTypeTEMPLATE>::block_size
};
//! Evaluate the nonlinearity at v.
virtual double operator()(const VectorType& v) const { return 0; }
//! Add the gradient of the nonlinearity at v to the vector gradient.
virtual void addGradient(const VectorType& v, VectorType& gradient) const {}
//! Add the Hessian matrix of the nonlinearity at v to the matrix Hessian.
virtual void addHessian(const VectorType& v, MatrixType& hessian) const {}
//! Add the indices of the Hessian matrix to the index set.
virtual void addHessianIndices(IndexSet& indices) const {}
/** \brief Set the internal position vector u_pos to v.
*
* This is only needed if the nonlinearity does not decouple in the Euclidean
*directions.
* If the nonlinearity decouples in the Euclidean directions this can be
*empty.
*/
virtual void setVector(const VectorType& v) {}
/** \brief Update the (i,j)-th entry of the internal position vector u_pos to
*x.
*
* \param i global index
* \param j local index
* \param x new value of the entry (u_pos)_(i,j)
*/
virtual void updateEntry(int i, double x, int j) {}
/** \brief Compute the subdifferential of the nonlinearity restricted to the
* line u_pos' +t e_(i,j) at t=0.
*
* Here e_(i,j) is the (i,j)-th Euclidean unit vector,
* and u_pos' is the internal position vector u_pos with the (i,j)-the entry
*replaced by x.
* If the nonlinearity decouples in the Euclidean directions this is simply
*the (i,j)-th
* component of the subdifferential.
*
* \param i global index
* \param j local index
* \param x value of the (i,j)-th entry of position to evaluate the
*nonlinearity at
* \param[out] D the subdifferential
*/
virtual void subDiff(int i, double x, Interval<double>& D, int j) const {
D[0] = D[1] = 0.0;
}
/** \brief Return the regularity of the nonlinearity restricted to the
* line u_pos' +t e_(i,j) at t=0.
*
* Here e_(i,j) is the (i,j)-th Euclidean unit vector,
* and u_pos' is the internal position vector u_pos with the (i,j)-the entry
*replaced by x.
* Usually this will be the third derivative or a local Lipschitz constant of
*the second
* derivative. Note that if the subdifferential is set-valued at this
*position, this
* value will normally be infinity.
*
* \param i global index
* \param j local index
* \param x value of the (i,j)-th entry of position to evaluate the
*nonlinearity at
* \returns a value measuring the regularity
*/
virtual double regularity(int i, double x, int j) const { return 0; }
/** \brief Compute the domain of the nonlinearity restricted to the
* line t e_(i,j) at t=0 where e_(i,j) is the (i,j)-th Euclidean unit vector.
*
* Notice that this does not depend on the position since the nonsmooth
* part of the nonlinearity must decouple in the Euclidean directions.
*
* \param i global index
* \param j local index
* \param[out] dom the domain
*/
virtual void domain(int i, Interval<double>& dom, int j) const {
dom[1] = std::numeric_limits<double>::max();
dom[0] = std::numeric_limits<double>::min();
}
/** \brief Compute a local domain around t=0 where the nonlinearity restricted
*to the
* line u_pos' +t e_(i,j) is smooth.
*
* Here e_(i,j) is the (i,j)-th Euclidean unit vector,
* and u_pos' is the internal position vector u_pos with the (i,j)-the entry
*replaced by x.
* This defaults to the whole domain. Usually there is no need to use
*different values here.
*
* \param i global index
* \param j local index
* \param x value of the (i,j)-th entry of position to evaluate the
*nonlinearity at
* \param[out] dom the domain
*/
virtual void smoothDomain(int i, double x, double regularity,
Interval<double>& dom, int j) const {
dom[1] = std::numeric_limits<double>::max();
dom[0] = std::numeric_limits<double>::min();
return;
}
};
#endif
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment