Skip to content
Snippets Groups Projects
Commit 5ea86119 authored by HenryTux's avatar HenryTux
Browse files

final changes

parent 10430270
No related branches found
No related tags found
No related merge requests found
No preview for this file type
...@@ -40,7 +40,7 @@ ...@@ -40,7 +40,7 @@
% Set project, title, and authors (use \\ for multiple lines) % Set project, title, and authors (use \\ for multiple lines)
\setproject{Project A08} \setproject{Project A08}
\settitle{Lagrangian Coherence in Quasi-Stationary Atmospheric States} \settitle{Lagrangian Coherence in Quasi-Stationary Atmospheric States}
\setauthors{Henry Schoeller, Robin Chemnitz, Stephan Pfahl, P\' eter Koltai, Maximilian Engel} \setauthors{\underline{Henry Schoeller}, Robin Chemnitz, Stephan Pfahl, P\' eter Koltai, Maximilian Engel}
\begin{document} \begin{document}
...@@ -68,10 +68,10 @@ $\rightarrow$ Find tight bundles of trajectories. ...@@ -68,10 +68,10 @@ $\rightarrow$ Find tight bundles of trajectories.
} }
\posterbox[anchor=north east](\paperwidth-\margin, -\headerheight-\margin)<1.07\boxwidth,28.8cm>{Quasi-Stationary Atmospheric States}{ \posterbox[anchor=north east](\paperwidth-\margin, -\headerheight-\margin)<1.07\boxwidth,28.8cm>{Quasi-Stationary Atmospheric States}{
QSAS -- a.k.a. high pressure blockings -- are \key{critical features of mid-latitude weather} and, importantly, associated with extreme events. Forecasting skill is, however, still unsatisfying. Physically, QSAS are characterized by \key{high stability}. QSAS -- a.k.a.~high pressure blockings -- are \key{critical features of mid-latitude weather} and, importantly, associated with extreme events. Forecasting skill is, however, still unsatisfying. Physically, QSAS are characterized by \key{high stability}.
\vfill \vfill
\includegraphics[scale=1]{im/2016_00.pdf} \includegraphics[scale=0.8, viewport=0 0 375 450, clip]{im/blocktypes.png}\\ \includegraphics[scale=1]{im/2016_00.pdf} \includegraphics[scale=0.8, viewport=0 0 375 450, clip]{im/blocktypes.png}\\
{\footnotesize Left: Blocking example with PV field (shaded), wind $>40 \mathrm{\frac{m}{s}}$ (blue) and blocking region (purple). Right: Point vortex model idealizations of $\Omega$- and High-over-Low-Blockings (from [2]).} {\footnotesize Left: Blocking example with PV field (shaded), wind $>30 \mathrm{\frac{m}{s}}$ (blue) and blocking region (purple). Right: Point vortex model idealizations of $\Omega$- and High-over-Low-Blockings (from [2]).}
} }
\posterbox[](\margin, -\headerheight-3\margin-25cm)<0.95\boxwidth,15.5cm>{Algorithm}{ \posterbox[](\margin, -\headerheight-3\margin-25cm)<0.95\boxwidth,15.5cm>{Algorithm}{
...@@ -87,7 +87,7 @@ $\rightarrow$ Find tight bundles of trajectories. ...@@ -87,7 +87,7 @@ $\rightarrow$ Find tight bundles of trajectories.
} }
\posterbox[anchor=north east](\paperwidth-\margin, -\headerheight-2\margin-28.8cm)<1.05\boxwidth,52.7cm>{Trajectory Density}{ \posterbox[anchor=north east](\paperwidth-\margin, -\headerheight-2\margin-28.8cm)<1.05\boxwidth,52.7cm>{Trajectory Density}{
Assume at time $t$ the points $x_t^i$ points are sampled from some manifold $\mathbb{M}_t$. Then, the sum of the diffusion similarities can be interpreted as an \key{Monte Carlo integral approximation} [4] Assume at time $t$ the points $x_t^i$ are sampled from some manifold $\mathbb{M}_t$. Then, the sum of the diffusion similarities can be interpreted as a \key{Monte Carlo integral approximation} [4]
\begin{align*}S_{\epsilon, t} := \sum_{i,j}\mathbf{K}_{\epsilon, t}(i,j) \approx \frac{m^2}{\mathrm{vol}(\mathbb{M}_t)^2} \int_{\mathbb{M}_t}\int_{\mathbb{M}_t} \exp (-\epsilon^{-1} \|x-y\|^2) \dd x \dd y \approx \frac{m^2}{\mathrm{vol}(\mathbb{M}_t)} (\pi \epsilon)^{d/2} \begin{align*}S_{\epsilon, t} := \sum_{i,j}\mathbf{K}_{\epsilon, t}(i,j) \approx \frac{m^2}{\mathrm{vol}(\mathbb{M}_t)^2} \int_{\mathbb{M}_t}\int_{\mathbb{M}_t} \exp (-\epsilon^{-1} \|x-y\|^2) \dd x \dd y \approx \frac{m^2}{\mathrm{vol}(\mathbb{M}_t)} (\pi \epsilon)^{d/2}
\end{align*} \end{align*}
%$S_{\epsilon, t}$ is a measure of the \textcolor{red}{density} of points, with $\lim_{{\epsilon \to 0}} S_{\epsilon, t}= m$ and $\lim_{{\epsilon \to \infty}}S_{\epsilon, t} = m^2$. Also $\log(S_{\epsilon, t}) \approx \frac{d}{2}\log(\epsilon) + \log(\frac{(2\pi)^{d/2} m^2}{\mathrm{vol}(\mathbb{M}_t)})$. %$S_{\epsilon, t}$ is a measure of the \textcolor{red}{density} of points, with $\lim_{{\epsilon \to 0}} S_{\epsilon, t}= m$ and $\lim_{{\epsilon \to \infty}}S_{\epsilon, t} = m^2$. Also $\log(S_{\epsilon, t}) \approx \frac{d}{2}\log(\epsilon) + \log(\frac{(2\pi)^{d/2} m^2}{\mathrm{vol}(\mathbb{M}_t)})$.
...@@ -119,9 +119,9 @@ The boundary is detected with $\alpha$\texttt{-shapes} [3] using $\alpha \approx ...@@ -119,9 +119,9 @@ The boundary is detected with $\alpha$\texttt{-shapes} [3] using $\alpha \approx
\posterbox[](\margin, -\headerheight-5\margin-50.5cm)<0.95\boxwidth,\paperheight-\headerheight-6\margin-50.5cm>{Spectral Clustering}{ \posterbox[](\margin, -\headerheight-5\margin-50.5cm)<0.95\boxwidth,\paperheight-\headerheight-6\margin-50.5cm>{Spectral Clustering}{
To study the \key{airstreams entering} the QSAS, sample $x_0^i$ from the QSAS. Construct $\mathbf{Q}_{\epsilon}$ and compute its dominant eigenvalues.\\ To study the \key{airstreams entering} the QSAS, sample $x_0^i$ from the QSAS. Construct $\mathbf{Q}_{\epsilon}$ and compute its dominant eigenvalues.\\
$\rightarrow$ Find spectral gap.\\ $\rightarrow$ Find spectral gap.\\
Using $k$-means, group the points into $k$ clusters, using the $k-1$ dominant eigenvectors. \vspace{14.2cm}\\ With $k$-means, group the points into $k$ clusters, using the $k-1$ dominant eigenvectors. \vspace{14.2cm}\\
\parbox{.42\boxwidth}{ \parbox{.42\boxwidth}{
The clustered trajectories differ not only wrt their \key{geometric}, but also in their \key{dynamic properties}. Specifically, two coherent sets are identified (red and pink), which feature strong vertical, cross-isentropical motion (latent heating) and \key{stabilize the QSAS} via injection of low-PV air masses. Objectively identifying this process presents an advancement of existing research [5].} The clustered trajectories differ not only wrt their \key{geometric}, but also in their \key{dynamic properties}. Specifically, two coherent sets are identified (red and pink), which feature strong vertical, cross-isentropic motion (latent heating) and \key{stabilize the QSAS} via injection of low-PV air masses. Objectively identifying this process presents an advancement of existing research [5].}
} }
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment