Skip to content
Snippets Groups Projects
Commit 9644bcc8 authored by HenryTux's avatar HenryTux
Browse files

density finished

parent 731cddd8
No related branches found
No related tags found
No related merge requests found
No preview for this file type
No preview for this file type
No preview for this file type
File deleted
...@@ -72,16 +72,16 @@ ...@@ -72,16 +72,16 @@
\end{enumerate} \end{enumerate}
} }
\posterbox[anchor=north east](\paperwidth-\margin, -\headerheight-2\margin-29cm)<1.05\boxwidth,55cm>{Trajectory Density}{ \posterbox[anchor=north east](\paperwidth-\margin, -\headerheight-2\margin-29cm)<1.05\boxwidth,53cm>{Trajectory Density}{
Assume (at any $t$) the $m$ points are sampled from some manifold $\mathbb{M}_t$. Then, the sum of \textcolor{red}{diffusion distances} can be interpreted as a \textcolor{red}{Monte Carlo approximation} [4] s.t. $S_{\epsilon, t} := \sum_{i,j}\mathbf{K}_{\epsilon, t}(i,j) \approx \frac{m^2}{\mathrm{vol}(\mathbb{M}_t)^2} \int_{\mathbb{M}_t}\int_{\mathbb{M}_t} \exp (-D(x, y)/\epsilon) \dd x \dd y \approx \frac{m^2}{\mathrm{vol}(\mathbb{M}_t)} (2 \pi \epsilon)^{d/2}$, where $\mathbb{R}^d$ is the tangential space of $\mathbb{M}_t$. $S_{\epsilon, t}$ is a measure of the \textcolor{red}{density} of points, with $\lim_{{\epsilon \to 0}} S_{\epsilon, t}= m$ and $\lim_{{\epsilon \to \infty}}S_{\epsilon, t} = m^2$. Also $\log(S_{\epsilon, t}) \approx \frac{d}{2}\log(\epsilon) + \log(\frac{(2\pi)^{d/2} m^2}{\mathrm{vol}(\mathbb{M}_t)})$. Assume (at any $t$) the $m$ points are sampled from some manifold $\mathbb{M}_t$. Then, the sum of \textcolor{red}{diffusion distances} can be interpreted as a \textcolor{red}{Monte Carlo approximation} [4] s.t. $S_{\epsilon, t} := \sum_{i,j}\mathbf{K}_{\epsilon, t}(i,j) \approx \frac{m^2}{\mathrm{vol}(\mathbb{M}_t)^2} \int_{\mathbb{M}_t}\int_{\mathbb{M}_t} \exp (-D(x, y)/\epsilon) \dd x \dd y \approx \frac{m^2}{\mathrm{vol}(\mathbb{M}_t)} (2 \pi \epsilon)^{d/2}$, where $\mathbb{R}^d$ is the tangential space of $\mathbb{M}_t$. $S_{\epsilon, t}$ is a measure of the \textcolor{red}{density} of points, with $\lim_{{\epsilon \to 0}} S_{\epsilon, t}= m$ and $\lim_{{\epsilon \to \infty}}S_{\epsilon, t} = m^2$. Also $\log(S_{\epsilon, t}) \approx \frac{d}{2}\log(\epsilon) + \log(\frac{(2\pi)^{d/2} m^2}{\mathrm{vol}(\mathbb{M}_t)})$.
\vspace{8in}\\ \vspace{6.5in}\\
We obtain $d = \dim (\mathbb{M}_t)$ by maximizing $\frac{\dd \log (S_{\epsilon, t})}{\dd \log (\epsilon)}$ and calculate the point density measure $\rho (t) := \frac{1}{d}\log (\frac{m}{\mathrm{vol}(\mathbb{M}_t)})$. We obtain $d = \dim (\mathbb{M}_t)$ by maximizing $\frac{\dd \log (S_{\epsilon, t})}{\dd \log (\epsilon)}$ and calculate the point density measure $\rho (t) := \frac{1}{d}\log (\frac{m}{\mathrm{vol}(\mathbb{M}_t)})$.
\vspace{5.9in}\\ \vspace{5.4in}\\
The trajectories tend to be \textcolor{red}{denser after passage} through the QSAS, which is in line with the established notion of blockings as regions characterized by high stability. The trajectories tend to be \textcolor{red}{denser after passage} through the QSAS, which is in line with the established notion of blockings as regions characterized by high stability.
} }
\node[anchor=north west] (epsloglog) at (\paperwidth-\margin-1.05\boxwidth, -\headerheight-2\margin-43cm) {\includegraphics[scale=1]{im/20160502_00.pdf}}; \node[anchor=north west] (epsloglog) at (\paperwidth-\margin-1.05\boxwidth, -\headerheight-2\margin-43cm) {\includegraphics[scale=1]{im/20160502_00.pdf}};
\node[anchor=north west] (trajs) at (\paperwidth-\margin-0.48\boxwidth, -\headerheight-2\margin-49cm) {\includegraphics[scale=1]{im/trajs.pdf}}; \node[anchor=north west] (trajs) at (\paperwidth-\margin-0.4007\boxwidth, -\headerheight-2\margin-46.015cm) {\includegraphics[scale=1]{im/traj_20160502_00.pdf}};
%\begin{tikzpicture} %\begin{tikzpicture}
% First image (bottom layer) % First image (bottom layer)
% \node[anchor=north west,inner sep=0] (image1) at (0,0) {\includegraphics[scale=1]{im/20160502_00.pdf}}; % \node[anchor=north west,inner sep=0] (image1) at (0,0) {\includegraphics[scale=1]{im/20160502_00.pdf}};
...@@ -89,8 +89,8 @@ The trajectories tend to be \textcolor{red}{denser after passage} through the QS ...@@ -89,8 +89,8 @@ The trajectories tend to be \textcolor{red}{denser after passage} through the QS
% \node[anchor=north west,inner sep=0, opacity=1] (image2) at (10,-3) {\includegraphics[scale=1]{im/trajs.pdf}}; % \node[anchor=north west,inner sep=0, opacity=1] (image2) at (10,-3) {\includegraphics[scale=1]{im/trajs.pdf}};
%\end{tikzpicture} %\end{tikzpicture}
\node[anchor=north west] (dimension) at (\paperwidth-\margin-1.05\boxwidth, -\headerheight-2\margin-67.5cm) {\includegraphics[scale=1]{im/dimensionall.pdf}}; \node[anchor=north west] (dimension) at (\paperwidth-\margin-1.05\boxwidth, -\headerheight-2\margin-64cm) {\includegraphics[scale=1]{im/dimensionall.pdf}};
\node[anchor=north west] (density) at (\paperwidth-\margin-0.52\boxwidth, -\headerheight-2\margin-67.5cm) {\includegraphics[scale=1]{im/densityall.pdf}}; \node[anchor=north west] (density) at (\paperwidth-\margin-0.52\boxwidth, -\headerheight-2\margin-64cm) {\includegraphics[scale=1]{im/densityall.pdf}};
\posterbox[](\margin, -\headerheight-4\margin-45cm)<0.95\boxwidth,8cm>{Boundary Conditions}{ \posterbox[](\margin, -\headerheight-4\margin-45cm)<0.95\boxwidth,8cm>{Boundary Conditions}{
Flow across the boundary of $\mathbb{M}_t$ is possible. Therefore, \textcolor{red}{Dirichlet boundary conditions} $\mathbf{P}_{\epsilon, t}(i, j) = 0 \forall x^i_t \text{ or } x^j_t \in \partial \mathbb{M}_t$ have to be applied. Boundary points are detected with $\alpha$\texttt{-shapes} [3] using $\alpha \approx \mathcal{O}(\epsilon^{-1/2})$. Flow across the boundary of $\mathbb{M}_t$ is possible. Therefore, \textcolor{red}{Dirichlet boundary conditions} $\mathbf{P}_{\epsilon, t}(i, j) = 0 \forall x^i_t \text{ or } x^j_t \in \partial \mathbb{M}_t$ have to be applied. Boundary points are detected with $\alpha$\texttt{-shapes} [3] using $\alpha \approx \mathcal{O}(\epsilon^{-1/2})$.
...@@ -100,7 +100,7 @@ Flow across the boundary of $\mathbb{M}_t$ is possible. Therefore, \textcolor{re ...@@ -100,7 +100,7 @@ Flow across the boundary of $\mathbb{M}_t$ is possible. Therefore, \textcolor{re
Eigenvaluedecomposition of $\mathbf{Q}_{\epsilon}$ results in Eigenvaluedecomposition of $\mathbf{Q}_{\epsilon}$ results in
} }
\posterbox[anchor=north east](\paperwidth-\margin, -\headerheight-3\margin-85cm)<1.05\boxwidth,\paperheight-\headerheight-4\margin-85cm>{References}{ \posterbox[anchor=north east](\paperwidth-\margin, -\headerheight-3\margin-82cm)<1.05\boxwidth,\paperheight-\headerheight-4\margin-82cm>{References}{
Change font style and/or font size for, e.g., references:\\[2cm] Change font style and/or font size for, e.g., references:\\[2cm]
\small \small
\hspace*{1cm} [01] \textsc{Name 1}, \textit{Title 1}, Journal 1, Year 1\\[0.5cm] \hspace*{1cm} [01] \textsc{Name 1}, \textit{Title 1}, Journal 1, Year 1\\[0.5cm]
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment