Skip to content
Snippets Groups Projects
Commit 9333f07c authored by tolgayurt's avatar tolgayurt
Browse files

code refactoring

parent 19fbd1e3
No related branches found
No related tags found
No related merge requests found
Showing
with 7111 additions and 0 deletions
# AVl Quelle:https://www.programiz.com/dsa/avl-tree
# AVL tree implementation in Python
import sys
# Create a tree node
class TreeNode(object):
def __init__(self, key, vertice, vertice_neighbour):
self.key = key
self.vertice = vertice
self.vertice_neighbour = vertice_neighbour
self.left = None
self.right = None
self.height = 1
class AVLTree(object):
def find_edges(self, root, key, vertice_top):
if not root:
return vertice_top
elif key < root.key:
vertice_top = root
return self.find_edges(root.left, key, vertice_top)
elif key == root.key:
return root
else:
if vertice_top.key < key: # falls wir irgendwann im Buam nach links gegangen sind ist dieser Node der Nachfolger, ansonsten gibt es kein Nachfolger und die Ecke berührt den Container rand
vertice_top = TreeNode(key, (0, key), (0, 0))
return self.find_edges(root.right, key, vertice_top)
# return ("test",vertice_top)
# Function to insert a node
def insert_node(self, root, key, vertice, vertice_neighbour):
# Find the correct location and insert the node
if not root:
return TreeNode(key, vertice, vertice_neighbour)
elif key < root.key:
root.left = self.insert_node(root.left, key, vertice, vertice_neighbour)
else:
root.right = self.insert_node(root.right, key, vertice, vertice_neighbour)
root.height = 1 + max(self.getHeight(root.left),
self.getHeight(root.right))
# Update the balance factor and balance the tree
balanceFactor = self.getBalance(root)
if balanceFactor > 1:
if key < root.left.key:
return self.rightRotate(root)
else:
root.left = self.leftRotate(root.left)
return self.rightRotate(root)
if balanceFactor < -1:
if key > root.right.key:
return self.leftRotate(root)
else:
root.right = self.rightRotate(root.right)
return self.leftRotate(root)
return root
# Function to delete a node
def delete_node(self, root, key):
# Find the node to be deleted and remove it
if not root:
return root
elif key < root.key:
root.left = self.delete_node(root.left, key)
elif key > root.key:
root.right = self.delete_node(root.right, key)
else:
if root.left is None:
temp = root.right
root = None
return temp
elif root.right is None:
temp = root.left
root = None
return temp
temp = self.getMinValueNode(root.right)
root.key = temp.key
root.vertice = temp.vertice
root.vertice_neighbour = temp.vertice_neighbour
root.right = self.delete_node(root.right,
temp.key)
if root is None:
return root
# Update the balance factor of nodes
root.height = 1 + max(self.getHeight(root.left),
self.getHeight(root.right))
balanceFactor = self.getBalance(root)
# Balance the tree
if balanceFactor > 1:
if self.getBalance(root.left) >= 0:
return self.rightRotate(root)
else:
root.left = self.leftRotate(root.left)
return self.rightRotate(root)
if balanceFactor < -1:
if self.getBalance(root.right) <= 0:
return self.leftRotate(root)
else:
root.right = self.rightRotate(root.right)
return self.leftRotate(root)
return root
# Function to perform left rotation
def leftRotate(self, z):
y = z.right
T2 = y.left
y.left = z
z.right = T2
z.height = 1 + max(self.getHeight(z.left),
self.getHeight(z.right))
y.height = 1 + max(self.getHeight(y.left),
self.getHeight(y.right))
return y
# Function to perform right rotation
def rightRotate(self, z):
y = z.left
T3 = y.right
y.right = z
z.left = T3
z.height = 1 + max(self.getHeight(z.left),
self.getHeight(z.right))
y.height = 1 + max(self.getHeight(y.left),
self.getHeight(y.right))
return y
# Get the height of the node
def getHeight(self, root):
if not root:
return 0
return root.height
# Get balance factore of the node
def getBalance(self, root):
if not root:
return 0
return self.getHeight(root.left) - self.getHeight(root.right)
def getMinValueNode(self, root):
if root is None or root.left is None:
return root
return self.getMinValueNode(root.left)
def preOrder(self, root):
if not root:
return
print("{0} ".format(root.key), end="")
self.preOrder(root.left)
self.preOrder(root.right)
def preOrder_array(self, root, array, key):
if not root:
return
# print("{0} ".format(root.key), end="")
if root.key <= key:
array.append((root.vertice))
self.preOrder_array(root.left, array, key)
self.preOrder_array(root.right, array, key)
return array
# Print the tree
def printHelper(self, currPtr, indent, last):
if currPtr != None:
sys.stdout.write(indent)
if last:
sys.stdout.write("R----")
indent += " "
else:
sys.stdout.write("L----")
indent += "| "
print(currPtr.key)
self.printHelper(currPtr.left, indent, False)
self.printHelper(currPtr.right, indent, True)
\ No newline at end of file
import math
from django.shortcuts import render
from plotly.offline import plot
import plots.polygon as poly
from django.http import JsonResponse
from plotly.graph_objs import Scatter
import plotly.graph_objects as go
from django.http import HttpResponse
import pdb; pdb.set_trace
from plotly.subplots import make_subplots
import math
def polygon_plot(polygons):
plot_polygon_list = []
polygon_count = len(polygons)
cols = 4
rows = math.ceil(polygon_count / cols)
number = 0
sub_plot_titles = ['{} height:{} slope:{}'.format(number,
(int(polygons[number].height * 10)) / 10,
(int(polygons[number].slope * 10)) / 10)
for number in range(0, polygon_count)]
fig = make_subplots(rows=rows, cols=cols, subplot_titles=sub_plot_titles)
fig.update_layout(title="Convex Polygons")
counter = 0
for polygon in polygons:
x_data = polygon.x_values
y_data = polygon.y_values
scatter = go.Scatter(x=x_data, y=y_data,
mode='lines', name='{}'.format(counter),
opacity=0.8, marker_color='green')
spine_x_values = [x[0] for x in polygon.spine]
spine_y_values = [x[1] for x in polygon.spine]
scatter_spine = go.Scatter(x=spine_x_values, y=spine_y_values,
mode='lines', name='{} Spine'.format(counter),
opacity=0.8, marker_color='red')
row = math.ceil((counter + 1) / cols)
col = (counter % cols) + 1
fig.add_trace(scatter, row=row, col=col)
fig.add_trace(scatter_spine, row=row, col=col)
counter += 1
plot_polygons_div = plot(fig, output_type='div')
return plot_polygons_div
def high_class_plot(high_classes):
plot_high_class_list = []
polygon_number = 0
polygon_title_number = 0
for hc in high_classes:
polygon_count = len(hc.polygons)
cols = 4
rows = math.ceil(polygon_count / cols)
# sub_plot_titles = ['{} height:{} slope:{}'.format(number,
# (int(hc.spine_ordered_polygons[number].height * 10)) / 10,
# (int(hc.spine_ordered_polygons[number].slope * 10)) / 10)
# for number in range(0, polygon_count)]
sub_plot_titles=[]
for polygon in hc.spine_ordered_polygons:
sub_plot_titles.append('{} height:{} slope:{}'.format(polygon_title_number, (int(polygon.height*10))/10,(int(polygon.slope * 10)) / 10))
polygon_title_number += 1
fig = make_subplots(rows=rows, cols=cols, subplot_titles=sub_plot_titles)
fig.update_layout(title="Highclass {} heights: {}-{}".format(hc.i, int(hc.min_border), int(hc.max_border)))
counter = 0
for polygon in hc.spine_ordered_polygons:
x_data = polygon.x_values
y_data = polygon.y_values
scatter = go.Scatter(x=x_data, y=y_data,
mode='lines', name='{}'.format(polygon_number),
opacity=0.8, marker_color='green')
spine_x_values = [x[0] for x in polygon.spine]
spine_y_values = [x[1] for x in polygon.spine]
scatter_spine = go.Scatter(x=spine_x_values, y=spine_y_values,
mode='lines', name='{} Spine'.format(polygon_number),
opacity=0.8, marker_color='red')
row = math.ceil((counter + 1) / cols)
col = (counter % cols) + 1
fig.add_trace(scatter, row=row, col=col)
fig.add_trace(scatter_spine, row=row, col=col)
counter += 1
polygon_number += 1
plt_div = plot(fig, output_type='div')
plot_high_class_list.append(plt_div)
return plot_high_class_list
This diff is collapsed.
This diff is collapsed.
pip
Copyright (c) Django Software Foundation and individual contributors.
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither the name of Django nor the names of its contributors may be used
to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
Django is licensed under the three-clause BSD license; see the file
LICENSE for details.
Django includes code from the Python standard library, which is licensed under
the Python license, a permissive open source license. The copyright and license
is included below for compliance with Python's terms.
----------------------------------------------------------------------
Copyright (c) 2001-present Python Software Foundation; All Rights Reserved
A. HISTORY OF THE SOFTWARE
==========================
Python was created in the early 1990s by Guido van Rossum at Stichting
Mathematisch Centrum (CWI, see http://www.cwi.nl) in the Netherlands
as a successor of a language called ABC. Guido remains Python's
principal author, although it includes many contributions from others.
In 1995, Guido continued his work on Python at the Corporation for
National Research Initiatives (CNRI, see http://www.cnri.reston.va.us)
in Reston, Virginia where he released several versions of the
software.
In May 2000, Guido and the Python core development team moved to
BeOpen.com to form the BeOpen PythonLabs team. In October of the same
year, the PythonLabs team moved to Digital Creations, which became
Zope Corporation. In 2001, the Python Software Foundation (PSF, see
https://www.python.org/psf/) was formed, a non-profit organization
created specifically to own Python-related Intellectual Property.
Zope Corporation was a sponsoring member of the PSF.
All Python releases are Open Source (see http://www.opensource.org for
the Open Source Definition). Historically, most, but not all, Python
releases have also been GPL-compatible; the table below summarizes
the various releases.
Release Derived Year Owner GPL-
from compatible? (1)
0.9.0 thru 1.2 1991-1995 CWI yes
1.3 thru 1.5.2 1.2 1995-1999 CNRI yes
1.6 1.5.2 2000 CNRI no
2.0 1.6 2000 BeOpen.com no
1.6.1 1.6 2001 CNRI yes (2)
2.1 2.0+1.6.1 2001 PSF no
2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2 and above 2.1.1 2001-now PSF yes
Footnotes:
(1) GPL-compatible doesn't mean that we're distributing Python under
the GPL. All Python licenses, unlike the GPL, let you distribute
a modified version without making your changes open source. The
GPL-compatible licenses make it possible to combine Python with
other software that is released under the GPL; the others don't.
(2) According to Richard Stallman, 1.6.1 is not GPL-compatible,
because its license has a choice of law clause. According to
CNRI, however, Stallman's lawyer has told CNRI's lawyer that 1.6.1
is "not incompatible" with the GPL.
Thanks to the many outside volunteers who have worked under Guido's
direction to make these releases possible.
B. TERMS AND CONDITIONS FOR ACCESSING OR OTHERWISE USING PYTHON
===============================================================
PYTHON SOFTWARE FOUNDATION LICENSE VERSION 2
--------------------------------------------
1. This LICENSE AGREEMENT is between the Python Software Foundation
("PSF"), and the Individual or Organization ("Licensee") accessing and
otherwise using this software ("Python") in source or binary form and
its associated documentation.
2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to reproduce,
analyze, test, perform and/or display publicly, prepare derivative works,
distribute, and otherwise use Python alone or in any derivative version,
provided, however, that PSF's License Agreement and PSF's notice of copyright,
i.e., "Copyright (c) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020 Python Software Foundation;
All Rights Reserved" are retained in Python alone or in any derivative version
prepared by Licensee.
3. In the event Licensee prepares a derivative work that is based on
or incorporates Python or any part thereof, and wants to make
the derivative work available to others as provided herein, then
Licensee hereby agrees to include in any such work a brief summary of
the changes made to Python.
4. PSF is making Python available to Licensee on an "AS IS"
basis. PSF MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, PSF MAKES NO AND
DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.
5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON
FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS
A RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON,
OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.
6. This License Agreement will automatically terminate upon a material
breach of its terms and conditions.
7. Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between PSF and
Licensee. This License Agreement does not grant permission to use PSF
trademarks or trade name in a trademark sense to endorse or promote
products or services of Licensee, or any third party.
8. By copying, installing or otherwise using Python, Licensee
agrees to be bound by the terms and conditions of this License
Agreement.
BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0
-------------------------------------------
BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION 1
1. This LICENSE AGREEMENT is between BeOpen.com ("BeOpen"), having an
office at 160 Saratoga Avenue, Santa Clara, CA 95051, and the
Individual or Organization ("Licensee") accessing and otherwise using
this software in source or binary form and its associated
documentation ("the Software").
2. Subject to the terms and conditions of this BeOpen Python License
Agreement, BeOpen hereby grants Licensee a non-exclusive,
royalty-free, world-wide license to reproduce, analyze, test, perform
and/or display publicly, prepare derivative works, distribute, and
otherwise use the Software alone or in any derivative version,
provided, however, that the BeOpen Python License is retained in the
Software, alone or in any derivative version prepared by Licensee.
3. BeOpen is making the Software available to Licensee on an "AS IS"
basis. BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, BEOPEN MAKES NO AND
DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF THE SOFTWARE WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.
4. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF THE
SOFTWARE FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS
AS A RESULT OF USING, MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY
DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.
5. This License Agreement will automatically terminate upon a material
breach of its terms and conditions.
6. This License Agreement shall be governed by and interpreted in all
respects by the law of the State of California, excluding conflict of
law provisions. Nothing in this License Agreement shall be deemed to
create any relationship of agency, partnership, or joint venture
between BeOpen and Licensee. This License Agreement does not grant
permission to use BeOpen trademarks or trade names in a trademark
sense to endorse or promote products or services of Licensee, or any
third party. As an exception, the "BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the
permissions granted on that web page.
7. By copying, installing or otherwise using the software, Licensee
agrees to be bound by the terms and conditions of this License
Agreement.
CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1
---------------------------------------
1. This LICENSE AGREEMENT is between the Corporation for National
Research Initiatives, having an office at 1895 Preston White Drive,
Reston, VA 20191 ("CNRI"), and the Individual or Organization
("Licensee") accessing and otherwise using Python 1.6.1 software in
source or binary form and its associated documentation.
2. Subject to the terms and conditions of this License Agreement, CNRI
hereby grants Licensee a nonexclusive, royalty-free, world-wide
license to reproduce, analyze, test, perform and/or display publicly,
prepare derivative works, distribute, and otherwise use Python 1.6.1
alone or in any derivative version, provided, however, that CNRI's
License Agreement and CNRI's notice of copyright, i.e., "Copyright (c)
1995-2001 Corporation for National Research Initiatives; All Rights
Reserved" are retained in Python 1.6.1 alone or in any derivative
version prepared by Licensee. Alternately, in lieu of CNRI's License
Agreement, Licensee may substitute the following text (omitting the
quotes): "Python 1.6.1 is made available subject to the terms and
conditions in CNRI's License Agreement. This Agreement together with
Python 1.6.1 may be located on the Internet using the following
unique, persistent identifier (known as a handle): 1895.22/1013. This
Agreement may also be obtained from a proxy server on the Internet
using the following URL: http://hdl.handle.net/1895.22/1013".
3. In the event Licensee prepares a derivative work that is based on
or incorporates Python 1.6.1 or any part thereof, and wants to make
the derivative work available to others as provided herein, then
Licensee hereby agrees to include in any such work a brief summary of
the changes made to Python 1.6.1.
4. CNRI is making Python 1.6.1 available to Licensee on an "AS IS"
basis. CNRI MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, CNRI MAKES NO AND
DISCLAIMS ANY REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR FITNESS
FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 1.6.1 WILL NOT
INFRINGE ANY THIRD PARTY RIGHTS.
5. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS OF PYTHON
1.6.1 FOR ANY INCIDENTAL, SPECIAL, OR CONSEQUENTIAL DAMAGES OR LOSS AS
A RESULT OF MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 1.6.1,
OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE POSSIBILITY THEREOF.
6. This License Agreement will automatically terminate upon a material
breach of its terms and conditions.
7. This License Agreement shall be governed by the federal
intellectual property law of the United States, including without
limitation the federal copyright law, and, to the extent such
U.S. federal law does not apply, by the law of the Commonwealth of
Virginia, excluding Virginia's conflict of law provisions.
Notwithstanding the foregoing, with regard to derivative works based
on Python 1.6.1 that incorporate non-separable material that was
previously distributed under the GNU General Public License (GPL), the
law of the Commonwealth of Virginia shall govern this License
Agreement only as to issues arising under or with respect to
Paragraphs 4, 5, and 7 of this License Agreement. Nothing in this
License Agreement shall be deemed to create any relationship of
agency, partnership, or joint venture between CNRI and Licensee. This
License Agreement does not grant permission to use CNRI trademarks or
trade name in a trademark sense to endorse or promote products or
services of Licensee, or any third party.
8. By clicking on the "ACCEPT" button where indicated, or by copying,
installing or otherwise using Python 1.6.1, Licensee agrees to be
bound by the terms and conditions of this License Agreement.
ACCEPT
CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2
--------------------------------------------------
Copyright (c) 1991 - 1995, Stichting Mathematisch Centrum Amsterdam,
The Netherlands. All rights reserved.
Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Stichting Mathematisch
Centrum or CWI not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.
STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
Metadata-Version: 2.1
Name: Django
Version: 3.1.3
Summary: A high-level Python Web framework that encourages rapid development and clean, pragmatic design.
Home-page: https://www.djangoproject.com/
Author: Django Software Foundation
Author-email: foundation@djangoproject.com
License: BSD-3-Clause
Project-URL: Documentation, https://docs.djangoproject.com/
Project-URL: Release notes, https://docs.djangoproject.com/en/stable/releases/
Project-URL: Funding, https://www.djangoproject.com/fundraising/
Project-URL: Source, https://github.com/django/django
Project-URL: Tracker, https://code.djangoproject.com/
Platform: UNKNOWN
Classifier: Development Status :: 5 - Production/Stable
Classifier: Environment :: Web Environment
Classifier: Framework :: Django
Classifier: Intended Audience :: Developers
Classifier: License :: OSI Approved :: BSD License
Classifier: Operating System :: OS Independent
Classifier: Programming Language :: Python
Classifier: Programming Language :: Python :: 3
Classifier: Programming Language :: Python :: 3 :: Only
Classifier: Programming Language :: Python :: 3.6
Classifier: Programming Language :: Python :: 3.7
Classifier: Programming Language :: Python :: 3.8
Classifier: Programming Language :: Python :: 3.9
Classifier: Topic :: Internet :: WWW/HTTP
Classifier: Topic :: Internet :: WWW/HTTP :: Dynamic Content
Classifier: Topic :: Internet :: WWW/HTTP :: WSGI
Classifier: Topic :: Software Development :: Libraries :: Application Frameworks
Classifier: Topic :: Software Development :: Libraries :: Python Modules
Requires-Python: >=3.6
Requires-Dist: asgiref (<4,>=3.2.10)
Requires-Dist: pytz
Requires-Dist: sqlparse (>=0.2.2)
Provides-Extra: argon2
Requires-Dist: argon2-cffi (>=16.1.0) ; extra == 'argon2'
Provides-Extra: bcrypt
Requires-Dist: bcrypt ; extra == 'bcrypt'
======
Django
======
Django is a high-level Python Web framework that encourages rapid development
and clean, pragmatic design. Thanks for checking it out.
All documentation is in the "``docs``" directory and online at
https://docs.djangoproject.com/en/stable/. If you're just getting started,
here's how we recommend you read the docs:
* First, read ``docs/intro/install.txt`` for instructions on installing Django.
* Next, work through the tutorials in order (``docs/intro/tutorial01.txt``,
``docs/intro/tutorial02.txt``, etc.).
* If you want to set up an actual deployment server, read
``docs/howto/deployment/index.txt`` for instructions.
* You'll probably want to read through the topical guides (in ``docs/topics``)
next; from there you can jump to the HOWTOs (in ``docs/howto``) for specific
problems, and check out the reference (``docs/ref``) for gory details.
* See ``docs/README`` for instructions on building an HTML version of the docs.
Docs are updated rigorously. If you find any problems in the docs, or think
they should be clarified in any way, please take 30 seconds to fill out a
ticket here: https://code.djangoproject.com/newticket
To get more help:
* Join the ``#django`` channel on irc.freenode.net. Lots of helpful people hang
out there. See https://freenode.net/kb/answer/chat if you're new to IRC.
* Join the django-users mailing list, or read the archives, at
https://groups.google.com/group/django-users.
To contribute to Django:
* Check out https://docs.djangoproject.com/en/dev/internals/contributing/ for
information about getting involved.
To run Django's test suite:
* Follow the instructions in the "Unit tests" section of
``docs/internals/contributing/writing-code/unit-tests.txt``, published online at
https://docs.djangoproject.com/en/dev/internals/contributing/writing-code/unit-tests/#running-the-unit-tests
This diff is collapsed.
Wheel-Version: 1.0
Generator: bdist_wheel (0.34.2)
Root-Is-Purelib: true
Tag: py3-none-any
[console_scripts]
django-admin = django.core.management:execute_from_command_line
django
# encoding: utf-8
"""
IPython: tools for interactive and parallel computing in Python.
https://ipython.org
"""
#-----------------------------------------------------------------------------
# Copyright (c) 2008-2011, IPython Development Team.
# Copyright (c) 2001-2007, Fernando Perez <fernando.perez@colorado.edu>
# Copyright (c) 2001, Janko Hauser <jhauser@zscout.de>
# Copyright (c) 2001, Nathaniel Gray <n8gray@caltech.edu>
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
#-----------------------------------------------------------------------------
#-----------------------------------------------------------------------------
# Imports
#-----------------------------------------------------------------------------
import os
import sys
#-----------------------------------------------------------------------------
# Setup everything
#-----------------------------------------------------------------------------
# Don't forget to also update setup.py when this changes!
if sys.version_info < (3, 6):
raise ImportError(
"""
IPython 7.10+ supports Python 3.6 and above.
When using Python 2.7, please install IPython 5.x LTS Long Term Support version.
Python 3.3 and 3.4 were supported up to IPython 6.x.
Python 3.5 was supported with IPython 7.0 to 7.9.
See IPython `README.rst` file for more information:
https://github.com/ipython/ipython/blob/master/README.rst
""")
# Make it easy to import extensions - they are always directly on pythonpath.
# Therefore, non-IPython modules can be added to extensions directory.
# This should probably be in ipapp.py.
sys.path.append(os.path.join(os.path.dirname(__file__), "extensions"))
#-----------------------------------------------------------------------------
# Setup the top level names
#-----------------------------------------------------------------------------
from .core.getipython import get_ipython
from .core import release
from .core.application import Application
from .terminal.embed import embed
from .core.interactiveshell import InteractiveShell
from .testing import test
from .utils.sysinfo import sys_info
from .utils.frame import extract_module_locals
# Release data
__author__ = '%s <%s>' % (release.author, release.author_email)
__license__ = release.license
__version__ = release.version
version_info = release.version_info
def embed_kernel(module=None, local_ns=None, **kwargs):
"""Embed and start an IPython kernel in a given scope.
If you don't want the kernel to initialize the namespace
from the scope of the surrounding function,
and/or you want to load full IPython configuration,
you probably want `IPython.start_kernel()` instead.
Parameters
----------
module : types.ModuleType, optional
The module to load into IPython globals (default: caller)
local_ns : dict, optional
The namespace to load into IPython user namespace (default: caller)
kwargs : various, optional
Further keyword args are relayed to the IPKernelApp constructor,
allowing configuration of the Kernel. Will only have an effect
on the first embed_kernel call for a given process.
"""
(caller_module, caller_locals) = extract_module_locals(1)
if module is None:
module = caller_module
if local_ns is None:
local_ns = caller_locals
# Only import .zmq when we really need it
from ipykernel.embed import embed_kernel as real_embed_kernel
real_embed_kernel(module=module, local_ns=local_ns, **kwargs)
def start_ipython(argv=None, **kwargs):
"""Launch a normal IPython instance (as opposed to embedded)
`IPython.embed()` puts a shell in a particular calling scope,
such as a function or method for debugging purposes,
which is often not desirable.
`start_ipython()` does full, regular IPython initialization,
including loading startup files, configuration, etc.
much of which is skipped by `embed()`.
This is a public API method, and will survive implementation changes.
Parameters
----------
argv : list or None, optional
If unspecified or None, IPython will parse command-line options from sys.argv.
To prevent any command-line parsing, pass an empty list: `argv=[]`.
user_ns : dict, optional
specify this dictionary to initialize the IPython user namespace with particular values.
kwargs : various, optional
Any other kwargs will be passed to the Application constructor,
such as `config`.
"""
from IPython.terminal.ipapp import launch_new_instance
return launch_new_instance(argv=argv, **kwargs)
def start_kernel(argv=None, **kwargs):
"""Launch a normal IPython kernel instance (as opposed to embedded)
`IPython.embed_kernel()` puts a shell in a particular calling scope,
such as a function or method for debugging purposes,
which is often not desirable.
`start_kernel()` does full, regular IPython initialization,
including loading startup files, configuration, etc.
much of which is skipped by `embed()`.
Parameters
----------
argv : list or None, optional
If unspecified or None, IPython will parse command-line options from sys.argv.
To prevent any command-line parsing, pass an empty list: `argv=[]`.
user_ns : dict, optional
specify this dictionary to initialize the IPython user namespace with particular values.
kwargs : various, optional
Any other kwargs will be passed to the Application constructor,
such as `config`.
"""
from IPython.kernel.zmq.kernelapp import launch_new_instance
return launch_new_instance(argv=argv, **kwargs)
# encoding: utf-8
"""Terminal-based IPython entry point.
"""
#-----------------------------------------------------------------------------
# Copyright (c) 2012, IPython Development Team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
#-----------------------------------------------------------------------------
from IPython import start_ipython
start_ipython()
"""
Shim to maintain backwards compatibility with old IPython.config imports.
"""
# Copyright (c) IPython Development Team.
# Distributed under the terms of the Modified BSD License.
import sys
from warnings import warn
from .utils.shimmodule import ShimModule, ShimWarning
warn("The `IPython.config` package has been deprecated since IPython 4.0. "
"You should import from traitlets.config instead.", ShimWarning)
# Unconditionally insert the shim into sys.modules so that further import calls
# trigger the custom attribute access above
sys.modules['IPython.config'] = ShimModule(src='IPython.config', mirror='traitlets.config')
import types
import sys
import builtins
import os
import pytest
import pathlib
import shutil
from .testing import tools
def get_ipython():
from .terminal.interactiveshell import TerminalInteractiveShell
if TerminalInteractiveShell._instance:
return TerminalInteractiveShell.instance()
config = tools.default_config()
config.TerminalInteractiveShell.simple_prompt = True
# Create and initialize our test-friendly IPython instance.
shell = TerminalInteractiveShell.instance(config=config)
return shell
@pytest.fixture(scope='session', autouse=True)
def work_path():
path = pathlib.Path("./tmp-ipython-pytest-profiledir")
os.environ["IPYTHONDIR"] = str(path.absolute())
if path.exists():
raise ValueError('IPython dir temporary path already exists ! Did previous test run exit successfully ?')
path.mkdir()
yield
shutil.rmtree(str(path.resolve()))
def nopage(strng, start=0, screen_lines=0, pager_cmd=None):
if isinstance(strng, dict):
strng = strng.get("text/plain", "")
print(strng)
def xsys(self, cmd):
"""Replace the default system call with a capturing one for doctest.
"""
# We use getoutput, but we need to strip it because pexpect captures
# the trailing newline differently from commands.getoutput
print(self.getoutput(cmd, split=False, depth=1).rstrip(), end="", file=sys.stdout)
sys.stdout.flush()
# for things to work correctly we would need this as a session fixture;
# unfortunately this will fail on some test that get executed as _collection_
# time (before the fixture run), in particular parametrized test that contain
# yields. so for now execute at import time.
#@pytest.fixture(autouse=True, scope='session')
def inject():
builtins.get_ipython = get_ipython
builtins._ip = get_ipython()
builtins.ip = get_ipython()
builtins.ip.system = types.MethodType(xsys, ip)
builtins.ip.builtin_trap.activate()
from .core import page
page.pager_page = nopage
# yield
inject()
"""
Shim to maintain backwards compatibility with old IPython.consoleapp imports.
"""
# Copyright (c) IPython Development Team.
# Distributed under the terms of the Modified BSD License.
from warnings import warn
warn("The `IPython.consoleapp` package has been deprecated since IPython 4.0."
"You should import from jupyter_client.consoleapp instead.", stacklevel=2)
from jupyter_client.consoleapp import *
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please to comment