Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
dune-elasticity
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Iterations
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
This is an archived project. Repository and other project resources are read-only.
Show more breadcrumbs
agnumpde
dune-elasticity
Commits
5c30cf20
Commit
5c30cf20
authored
5 years ago
by
lisa_julia.nebel_at_tu-dresden.de
Browse files
Options
Downloads
Patches
Plain Diff
Add parset file for the initial deformation for 'film-on-substrate'
parent
122b1dc0
No related branches found
No related tags found
1 merge request
!46
Small suggestions
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
problems/film-on-substrate-deformation.parset
+133
-0
133 additions, 0 deletions
problems/film-on-substrate-deformation.parset
with
133 additions
and
0 deletions
problems/film-on-substrate-deformation.parset
0 → 100644
+
133
−
0
View file @
5c30cf20
#############################################
# Grid parameters
#############################################
structuredGrid = true
lower = 0 0 0
# whole experiment: 45 mm x 10 mm x 2 mm, scaling with 10^7 such that the thickness, which is around 100 nm, so 100x10^-9 = 10^-7 is equal to 1.
# upper = 45e4 10e4 2e4
# using only a section of the whole experiment as deformed grid to start with for dune-gfe: use much smaller dimensions!
upper = 600 200 200
elements = 15 5 5
# Number of grid levels
numLevels = 3
adaptiveRefinement = true
#############################################
# Solver parameters
#############################################
# Number of homotopy steps for the Dirichlet boundary conditions
numHomotopySteps = 1
# Tolerance of the trust region solver
tolerance = 1e-6
# Max number of steps of the trust region solver
maxTrustRegionSteps = 500
# Initial trust-region radius
initialTrustRegionRadius = 0.1
# Number of multigrid iterations per trust-region step
numIt = 1000
# Number of presmoothing steps
nu1 = 3
# Number of postsmoothing steps
nu2 = 3
# Damping for the smoothers of the multigrid solver
damping = 1.0
# Number of coarse grid corrections
mu = 1
# Number of base solver iterations
baseIt = 100
# Tolerance of the multigrid solver
mgTolerance = 1e-7
# Tolerance of the base grid solver
baseTolerance = 1e-8
############################
# Material parameters
############################
energy = mooneyrivlin # stvenantkirchhoff, neohooke, hencky, exphencky or mooneyrivlin
[materialParameters]
## Lame parameters for stvenantkirchhoff, E = mu(3*lambda + 2*mu)/(lambda + mu)
#mu = 2.7191e+4
#lambda = 4.4364e+4
#mooneyrivlin_a = 2.7191e+6
#mooneyrivlin_b = 2.7191e+6
#mooneyrivlin_c = 2.7191e+6
#mooneyrivlin_10 = -7.28e+5 #182 20:1
#mooneyrivlin_01 = 9.17e+5
#mooneyrivlin_20 = 1.23e+5
#mooneyrivlin_02 = 8.15e+5
#mooneyrivlin_11 = -5.14e+5
#mooneyrivlin_10 = -3.01e+6 #182 2:1
#mooneyrivlin_01 = 3.36e+6
#mooneyrivlin_20 = 5.03e+6
#mooneyrivlin_02 = 13.1e+6
#mooneyrivlin_11 = -15.2e+6
mooneyrivlin_10 = -1.67e+6 #184 2:1
mooneyrivlin_01 = 1.94e+6
mooneyrivlin_20 = 2.42e+6
mooneyrivlin_02 = 6.52e+6
mooneyrivlin_11 = -7.34e+6
mooneyrivlin_30 = 0
mooneyrivlin_21 = 0
mooneyrivlin_12 = 0
mooneyrivlin_03 = 0
# volume-preserving parameter
mooneyrivlin_k = 75e+6
# How to choose the volume-preserving parameter?
# We need a stretch of 30% (45e4 10e4 2e4 in x-direction, so a stretch of 45e4*0.3 = 13.5e4)
# 184 2:1, mooneyrivlin_k = .. and mooneyrivlin_energy = square, neumannValues = 27e4 0 0
# 184 2:1, mooneyrivlin_k = 57e+6 and mooneyrivlin_energy = log, neumannValues = 27e4 0 0
mooneyrivlin_energy = square # log, square or ciarlet; different ways to compute the Mooney-Rivlin-Energy
# ciarlet: Fomula from "Ciarlet: Three-Dimensional Elasticity", here no penalty term is
# log: Generalized Rivlin model or polynomial hyperelastic model, using 0.5*mooneyrivlin_k*log(det(∇φ)) as the volume-preserving penalty term
# square: Generalized Rivlin model or polynomial hyperelastic model, using mooneyrivlin_k*(det(∇φ)-1)² as the volume-preserving penalty term
[]
#############################################
# Boundary values
#############################################
problem = wriggers-l-shape
### Python predicate specifying all Dirichlet grid vertices
# x is the vertex coordinate
dirichletVerticesPredicate = "x[0] < 0.01"
### Python predicate specifying all neumannValues grid vertices
# x is the vertex coordinate
neumannVerticesPredicate = "x[0] > 599.99"
### Neumann values
neumannValues = 27e4 0 0
# Initial deformation
initialDeformation = "[x[0], x[1], x[2]]"
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment