Skip to content
Snippets Groups Projects
Commit 8f11103f authored by lisa_julia.nebel_at_tu-dresden.de's avatar lisa_julia.nebel_at_tu-dresden.de
Browse files

Simplify the calculation in mooneyrivlindensity.hh: Do not calulate the...

Simplify the calculation in mooneyrivlindensity.hh: Do not calulate the eigenvalues of F^TF and replace it by a function of trace(F^TF)
parent 8e3785c7
No related branches found
No related tags found
1 merge request!45Simplify the calculation in mooneyrivlindensity.hh
......@@ -58,53 +58,62 @@ public:
for (int k=0; k<dim; k++)
C[i][j] += gradient[k][i] * gradient[k][j];
//////////////////////////////////////////////////////////
// Eigenvalues of C = F^TF
//////////////////////////////////////////////////////////
// eigenvalues of C, i.e., squared singular values \sigma_i of F
Dune::FieldVector<field_type, dim> sigmaSquared;
FMatrixHelp::eigenValues(C, sigmaSquared);
/* The Mooney-Rivlin-Density is given as a function of the eigenvalues of the right Cauchy-Green-Deformation tensor C = F^TF
or the right Cauchy-Green-Deformation tensor B = FF^T.
C = F^TF and B = FF^T have the same eigenvalues - we can use either one of them.
There are three Mooney-Rivlin-Variants:
ciarlet: W(F) = mooneyrivlin_a*(normF)^2 + mooneyrivlin_b*(normFinv)^2*detF + mooneyrivlin_c*(detF)^2 -
((dim-1)*mooneyrivlin_a + mooneyrivlin_b + 2*mooneyrivlin_c)*ln(detF)
log: W(F) = \sum_{i,j=0}^{i+j<=n} mooneyrivlin_ij * (I1 - 3)^i * (I2 - 3)^j + mooneyrivlin_k * ln(det(F))
square: W(F) = \sum_{i,j=0}^{i+j<=n} mooneyrivlin_ij * (I1 - 3)^i * (I2 - 3)^j + mooneyrivlin_k * 0.5 * (det(F) - 1)
For log and square: I1 and I2 are the first two invariants of C (or B), multiplied with a factor depending on det(F):
I1 = (det(F)^(-2/dim)) * [ first invariant of C ]
= (det(F)^(-2/dim)) * (sum of all eigenvalues of C)
= (det(F)^(-2/dim)) * trace(C)
= (det(F)^(-2/dim)) * trace(F^TF)
= (det(F)^(-2/dim)) * (frobenius_norm(F))^2
I2 = (det(F)^(-4/dim)) * [ second invariant of C ]
= (det(F)^(-4/dim)) * 0.5 * [ trace(C)^2 - tr(C^2) ]
= (det(F)^(-4/dim)) * [C_11C_22 + C_11C_33 + C_22C_33 - C_12C_21 - C_13C_31 - C_23C_32]
= (det(F)^(-4/dim)) * [C_11C_22 + C_11C_33 + C_22C_33 - C_12^2 - C_13^2 - C_23^2]
*/
field_type normFSquared = gradient.frobenius_norm2();
field_type frobeniusNormFsquared = gradient.frobenius_norm2();
field_type detF = gradient.determinant();
if (detF < 0)
DUNE_THROW( Dune::Exception, "det(F) < 0, so it is not possible to calculate the MooneyRivlinEnergy.");
field_type normFinvSquared = 0;
field_type c2Tilde = 0;
for (int i = 0; i < dim; i++) {
normFinvSquared += 1/sigmaSquared[i];
// compute D, which is the sum of the squared eigenvalues
for (int j = i+1; j < dim; j++)
c2Tilde += sigmaSquared[j]*sigmaSquared[i];
}
field_type trCTildeMinus3 = normFSquared/pow(detF, 2.0/dim) - 3;
// \tilde{D} = \frac{1}{\det{F}^{4/3}}D -> divide by det(F)^(4/3)= det(C)^(2/3)
c2Tilde /= pow(detF, 4.0/dim);
field_type c2TildeMinus3 = c2Tilde - 3;
// Add the local energy density
field_type strainEnergy = 0;
if (mooneyrivlin_energy == "ciarlet")
{
//To calculate the squared frobeniusnorm of F^(-1), we actually invert F^(-1)
auto gradientInverse = gradient;
gradientInverse.invert();
field_type frobeinusNormFInverseSquared = gradientInverse.frobenius_norm2();
using std::log;
return mooneyrivlin_a*normFSquared + mooneyrivlin_b*normFinvSquared*detF + mooneyrivlin_c*detF*detF - ((dim-1)*mooneyrivlin_a + mooneyrivlin_b + 2*mooneyrivlin_c)*log(detF);
} else {
strainEnergy = mooneyrivlin_10 * trCTildeMinus3 +
mooneyrivlin_01 * c2TildeMinus3 +
mooneyrivlin_20 * trCTildeMinus3 * trCTildeMinus3 +
mooneyrivlin_02 * c2TildeMinus3 * c2TildeMinus3 +
mooneyrivlin_11 * trCTildeMinus3 * c2TildeMinus3 +
mooneyrivlin_30 * trCTildeMinus3 * trCTildeMinus3 * trCTildeMinus3 +
mooneyrivlin_21 * trCTildeMinus3 * trCTildeMinus3 * c2TildeMinus3 +
mooneyrivlin_12 * trCTildeMinus3 * c2TildeMinus3 * c2TildeMinus3 +
mooneyrivlin_03 * c2TildeMinus3 * c2TildeMinus3 * c2TildeMinus3;
return mooneyrivlin_a*frobeniusNormFsquared + mooneyrivlin_b*frobeinusNormFInverseSquared*detF + mooneyrivlin_c*detF*detF - ((dim-1)*mooneyrivlin_a + mooneyrivlin_b + 2*mooneyrivlin_c)*log(detF);
} else { // mooneyrivlin_energy is "log" or "square"
field_type a = pow(detF, 2.0/dim);
field_type invariant1Minus3 = frobeniusNormFsquared/a - 3;
field_type secondInvariantOfC = 0;
for (int i=0; i<dim-1; i++)
for (int j=i+1; j<dim; j++)
secondInvariantOfC += C[i][i]*C[j][j] - C[i][j]*C[i][j];
field_type invariant2Minus3 = secondInvariantOfC/(a*a) - 3;
strainEnergy = mooneyrivlin_10 * invariant1Minus3 +
mooneyrivlin_01 * invariant2Minus3 +
mooneyrivlin_20 * invariant1Minus3 * invariant1Minus3 +
mooneyrivlin_02 * invariant2Minus3 * invariant2Minus3 +
mooneyrivlin_11 * invariant1Minus3 * invariant2Minus3 +
mooneyrivlin_30 * invariant1Minus3 * invariant1Minus3 * invariant1Minus3 +
mooneyrivlin_21 * invariant1Minus3 * invariant1Minus3 * invariant2Minus3 +
mooneyrivlin_12 * invariant1Minus3 * invariant2Minus3 * invariant2Minus3 +
mooneyrivlin_03 * invariant2Minus3 * invariant2Minus3 * invariant2Minus3;
if (mooneyrivlin_energy == "log") {
using std::log;
field_type logDetF = log(detF);
......
......@@ -8,5 +8,8 @@ dune_add_test(SOURCES materialtest
add_dune_ug_flags(materialtest)
add_dune_adolc_flags(materialtest)
dune_add_test(SOURCES mooneyrivlintest
CMAKE_GUARD ADOLC_FOUND)
dune_add_test(SOURCES localhyperdualstiffnesstest
CMAKE_GUARD ADOLC_FOUND)
#include <config.h>
// Includes for the ADOL-C automatic differentiation library
// Need to come before (almost) all others.
#include <adolc/adouble.h>
#include <dune/fufem/utilities/adolcnamespaceinjections.hh>
#include <dune/common/parametertree.hh>
#include <dune/common/parallel/mpihelper.hh>
#include <dune/elasticity/assemblers/localadolcstiffness.hh>
#include <dune/elasticity/assemblers/feassembler.hh>
#include <dune/elasticity/materials/localintegralenergy.hh>
#include <dune/elasticity/materials/mooneyrivlindensity.hh>
#include <dune/functions/functionspacebases/interpolate.hh>
#include <dune/functions/functionspacebases/lagrangebasis.hh>
#include <dune/functions/functionspacebases/powerbasis.hh>
#include <dune/grid/utility/structuredgridfactory.hh>
#include <dune/grid/uggrid.hh>
// grid dimension
const int dim = 3;
//order of integration
const int order = 1;
using namespace Dune;
//differentiation method: ADOL-C
typedef adouble ValueType;
using namespace Dune;
typedef BlockVector<FieldVector<double,dim> > VectorType;
typedef BCRSMatrix<FieldMatrix<double, dim, dim> > MatrixType;
template <class Basis>
int assembleAndCompare (const Basis basis, const ParameterTree parameters, const VectorType x,
double expectedEnergy, double expectedGradientTwoNorm, double expectedGradientInfinityNorm, double expectedMatrixFrobeniusNorm) {
using LocalView = typename Basis::LocalView;
std::string mooneyrivlin_energy = parameters.get<std::string>("mooneyrivlin_energy");
auto elasticDensity = std::make_shared<Elasticity::MooneyRivlinDensity<dim,ValueType>>(parameters);
auto elasticEnergy = std::make_shared<Elasticity::LocalIntegralEnergy<LocalView, adouble>>(elasticDensity);
auto localADOLCStiffness = std::make_shared<Elasticity::LocalADOLCStiffness<LocalView>>(elasticEnergy);
Elasticity::FEAssembler<Basis,VectorType> assembler(basis, localADOLCStiffness);
//////////////////////////////////////////////////////////////
// Compute the energy, assemble and compare!
//////////////////////////////////////////////////////////////
VectorType gradient;
MatrixType hessianMatrix;
double energy = assembler.computeEnergy(x);
if ( std::abs(energy - expectedEnergy)/expectedEnergy > 1e-3)
{
std::cerr << std::setprecision(9);
std::cerr << "In " << mooneyrivlin_energy << ": Calculated energy is " << energy << " but '" << expectedEnergy << "' was expected!" << std::endl;
return 1;
}
assembler.assembleGradientAndHessian(x, gradient, hessianMatrix, true);
double gradientTwoNorm = gradient.two_norm();
double gradientInfinityNorm = gradient.infinity_norm();
double matrixFrobeniusNorm = hessianMatrix.frobenius_norm();
if ( std::abs(gradientTwoNorm - expectedGradientTwoNorm)/expectedGradientTwoNorm > 1e-4 || std::abs(gradientInfinityNorm - expectedGradientInfinityNorm)/expectedGradientInfinityNorm > 1e-8)
{
std::cerr << std::setprecision(9);
std::cerr << "In " << mooneyrivlin_energy << ": Calculated gradient max norm is " << gradientInfinityNorm << " but '" << expectedGradientInfinityNorm << "' was expected!" << std::endl;
std::cerr << "In " << mooneyrivlin_energy << ": Calculated gradient norm is " << gradientTwoNorm << " but '" << expectedGradientTwoNorm << "' was expected!" << std::endl;
return 1;
}
if ( std::abs(matrixFrobeniusNorm - expectedMatrixFrobeniusNorm)/expectedMatrixFrobeniusNorm > 1e-4)
{
std::cerr << std::setprecision(9);
std::cerr << "In " << mooneyrivlin_energy << ": Calculated matrix norm is " << matrixFrobeniusNorm << " but '" << expectedMatrixFrobeniusNorm << "' was expected!" << std::endl;
return 1;
}
return 0;
}
int main (int argc, char *argv[])
{
Dune::MPIHelper& mpiHelper = MPIHelper::instance(argc, argv);
// ///////////////////////////////////////
// Create the grid
// ///////////////////////////////////////
using GridType = UGGrid<dim>;
auto grid = StructuredGridFactory<GridType>::createCubeGrid({0,0,0}, {1,1,1}, {3,3,3});
int refine = 3;
while(refine > 0) {
for (auto&& e : elements(grid->leafGridView())){
bool refine = false;
for (int i = 0; i < e.geometry().corners(); i++) {
refine = refine || (e.geometry().corner(i)[0] > 0.99);
}
grid->mark(refine ? 1 : 0, e);
}
grid->adapt();
refine--;
}
grid->loadBalance();
using GridView = GridType::LeafGridView;
GridView gridView = grid->leafGridView();
/////////////////////////////////////////////////////////////////////////
// Create a power basis
/////////////////////////////////////////////////////////////////////////
using namespace Functions::BasisFactory;
auto basis = makeBasis(
gridView,
power<dim>(
lagrange<order>(),
blockedInterleaved()
));
using PowerBasis = decltype(basis);
//////////////////////////////////////////////////////////////
// Prepare the iterate x where we want to assemble
//////////////////////////////////////////////////////////////
VectorType x(basis.size());
Functions::interpolate(basis, x, [](FieldVector<double,dim> x){
FieldVector<double,dim> y = {0.5*x[0]*x[0], 0.5*x[1] + 0.2*x[0], 4*std::abs(std::sin(x[2]))};
return y;
});
ParameterTree parameters;
parameters["mooneyrivlin_10"] = "1.67e+6";
parameters["mooneyrivlin_01"] = "1.94e+6";
parameters["mooneyrivlin_20"] = "2.42e+6";
parameters["mooneyrivlin_02"] = "6.52e+6";
parameters["mooneyrivlin_11"] = "-7.34e+6";
parameters["mooneyrivlin_30"] = "0";
parameters["mooneyrivlin_03"] = "0";
parameters["mooneyrivlin_21"] = "0";
parameters["mooneyrivlin_12"] = "0";
parameters["mooneyrivlin_k"] = "75e+6";
parameters["mooneyrivlin_energy"] = "square";
double expectedEnergy = 177758377;
double expectedGradientTwoNorm = 2.13791422e+09;
double expectedGradientInfinityNorm = 599188506;
double expectedMatrixFrobeniusNorm = 1.62529884e+11;
int testSquare = assembleAndCompare(basis, parameters, x, expectedEnergy, expectedGradientTwoNorm, expectedGradientInfinityNorm, expectedMatrixFrobeniusNorm);
parameters["mooneyrivlin_energy"] = "log";
expectedEnergy = 181180273;
expectedGradientTwoNorm = 2.29399362e+09;
expectedGradientInfinityNorm = 648551554;
expectedMatrixFrobeniusNorm = 1.67152642e+11;
int testLog = assembleAndCompare(basis, parameters, x, expectedEnergy, expectedGradientTwoNorm, expectedGradientInfinityNorm, expectedMatrixFrobeniusNorm);
parameters["mooneyrivlin_energy"] = "ciarlet";
parameters["mooneyrivlin_a"] = "2.42e+6";
parameters["mooneyrivlin_b"] = "6.52e+6";
parameters["mooneyrivlin_c"] = "-7.34e+6";
expectedEnergy = 83069427.2;
expectedGradientTwoNorm = 163210957;
expectedGradientInfinityNorm = 49284369.2;
expectedMatrixFrobeniusNorm = 5.92126562e+09;
int testCiarlet = assembleAndCompare(basis, parameters, x, expectedEnergy, expectedGradientTwoNorm, expectedGradientInfinityNorm, expectedMatrixFrobeniusNorm);
return testCiarlet + testLog + testSquare;
}
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment