# whole experiment: 45 mm x 10 mm x 2 mm, scaling with 10^7 such that the thickness, which is around 100 nm, so 100x10^-9 = 10^-7 is equal to 1.
# upper = 45e4 10e4 2e4
# using only a section of the whole experiment as deformed grid to start with for dune-gfe: use much smaller dimensions!
upper = 200 100 200
upper = 200 100 200
elements = 10 5 5
elements = 10 5 5
# Number of grid levels: refinement levels of the surface shell part, refined using hierarchic refinement
# Number of grid levels: refinement levels of the surface shell part, refined using hierarchic refinement
numLevels = 2
numLevels = 1
#Overlap indicator for the grid when doing parallel calculations; when set to false, all communication will be done assuming there is no overlap when assembling the matrix and the rhs
#Overlap indicator for the grid when doing parallel calculations; when set to false, all communication will be done assuming there is no overlap when assembling the matrix and the rhs
overlap = false
overlap = false
...
@@ -63,33 +67,50 @@ baseTolerance = 1e-8
...
@@ -63,33 +67,50 @@ baseTolerance = 1e-8
# Material parameters
# Material parameters
############################
############################
energy = mooneyrivlin
energy = mooneyrivlin # stvenantkirchhoff, neohooke, hencky, exphencky or mooneyrivlin
## For the Wriggers L-shape example
[materialParameters]
[materialParameters]
# Lame parameters for stvenantkirchhoff
## Lame parameters for stvenantkirchhoff, E = mu(3*lambda + 2*mu)/(lambda + mu)
mooneyrivlin_k = 55e+6 # 184 2:1, mooneyrivlin_k = 5e+7 and mooneyrivlin_energy = log, the neumannValues = 27e4 0 0 result in a stretch of 30% of 45e4 10e4 2e4 in x-direction, so a stretch of 45e4*0.3 = 13.5e4
mooneyrivlin_energy = log # log, square or ciarlet; different ways to compute the Mooney-Rivlin-Energy
mooneyrivlin_energy = log # log, square or ciarlet; different ways to compute the Mooney-Rivlin-Energy
# ciarlet: Fomula from "Ciarlet: Three-Dimensional Elasticity", here no penalty term is
# log: Generalized Rivlin model or polynomial hyperelastic model, using 0.5*mooneyrivlin_k*log(det(∇φ)) as the volume-preserving penalty term
# square: Generalized Rivlin model or polynomial hyperelastic model, using mooneyrivlin_k*(det(∇φ)-1)² as the volume-preserving penalty term