Skip to content
Snippets Groups Projects
Commit e901728b authored by nicoa96's avatar nicoa96
Browse files

bht_algorithm_3D

parent 914052b3
No related branches found
No related tags found
1 merge request!10Nicoa96 main patch 73354
Pipeline #59647 passed
"""
This module implements the Barnes Hut Tree (BHT) Algorithm for 3D data.
"""
import numpy as np
class MainApp:
def __init__(self):
"""Initialize the MainApp with a root node."""
self.rootNode = TreeNode(x=0, y=0, z=0, width=100, height=100, depth=100)
def BuildTree(self, particles):
"""Build the Octree by inserting particles.
Args:
particles (list): A list of Particle objects to be inserted into the Octree.
"""
self.ResetTree(particles) # Empty the tree
for particle in particles:
self.rootNode.insert(particle)
def ResetTree(self, particles):
"""Reset the Quadtree by reinitializing the root node."""
# Define the size of the rootNode based on the positions of the particles
#min_x = min([particle.x for particle in particles])
#min_y = min([particle.y for particle in particles])
#min_z = min([particle.z for particle in particles])
#max_x = max([particle.x for particle in particles])
#max_y = max([particle.y for particle in particles])
#max_z = max([particle.z for particle in particles])
#root_height = max_y - min_y
#root_width = max_x - min_x
#root_depth = max_z - min_z
#self.rootNode = TreeNode(x=min_x, y=min_y, z=min_z, width=root_width, height=root_height, depth=root_depth)
self.rootNode = TreeNode(x=0, y=0, z=0, width=100, height=100, depth=100)
class Particle:
def __init__(self, x, y, z, mass):
"""Initialize a Particle with x, y, z coordinates and mass."""
self.x = x
self.y = y
self.z = z
self.mass = mass
self.vx = 0.0 # Velocity component in x direction
self.vy = 0.0 # Velocity component in y direction
self.vz = 0.0 # Velocity component in z direction
self.fx = 0.0 # Force component in x direction
self.fy = 0.0 # Force component in y direction
self.fz = 0.0 # Force component in z direction
class TreeNode:
def __init__(self, x, y, z, width, height, depth):
"""Initialize a TreeNode representing a octant in the Octree.
Args:
x (float): x-coordinate of the node.
y (float): y-coordinate of the node.
z (float): z-coordinate of the node.
width (float): Width of the node.
height (float): Height of the node.
depth (float): Depth of the node.
"""
self.x = x
self.y = y
self.z = z
self.width = width
self.height = height
self.depth = depth
self.particle = None # Particle contained in this node
self.center_of_mass = np.array([(x + width) / 2, (y + height) / 2, (z + depth) / 2])
self.total_mass = 0 # Total mass contained in the node
self.children = np.empty(8, dtype=object) # Children nodes (F-SW, F-SE, F-NW, F-NE, B-SW, B-SE, B-NW, B-NE,)
def contains(self, particle):
"""Check if the particle is within the bounds of this node.
Args:
particle (Particle): The particle to be checked.
Returns:
bool: True if the particle is within the node's bounds, False otherwise.
"""
return (self.x <= particle.x <= self.x + self.width and self.y <= particle.y <= self.y + self.height
and self.z <= particle.z <= self.z + self.depth)
def insert(self, particle):
"""Insert a particle into the Octree.
Args:
particle (Particle): The particle to be inserted.
Returns:
bool: True if the particle is inserted, False otherwise.
"""
if not self.contains(particle):
return False # Particle doesn't belong in this node
if self.particle is None and all(child is None for child in self.children):
# If the node is empty and has no children, insert particle here.
self.particle = particle
#print(f'particle inserted: x={round(self.particle.x,2)}, y={round(self.particle.y,2)}, , z={round(self.particle.z,2)}')
return True # Particle inserted in an empty node
if all(child is None for child in self.children):
# If no children exist, create and insert both particles
self.subdivide()
self.insert(self.particle) # Reinsert existing particle into subnode
self.insert(particle) # Insert new particle
self.particle = None # Clear particle from this node
else:
# If the node has children, insert particle in the child node.
oct_index = self.get_octant(particle)
if self.children[oct_index] is None:
print('Missing node:', self.children)
# Create a child node if it doesn't exist
self.children[oct_index] = TreeNode(self.x + (oct_index % 2) * (self.width / 2),
self.y + (oct_index // 2) * (self.height / 2),
self.z + (oct_index // 2) * (self.depth / 2), self.width / 2,
self.height / 2, self.depth / 2)
self.children[oct_index].insert(particle)
def subdivide(self):
"""Create the children of the node."""
sub_width = self.width / 2
sub_height = self.height / 2
sub_depth = self.depth / 2
self.children[0] = TreeNode(self.x, self.y, self.z, sub_width, sub_height, sub_depth) # B-SW
self.children[1] = TreeNode(self.x + sub_width, self.y, self.z, sub_width, sub_height, sub_depth) # B-SE
self.children[2] = TreeNode(self.x, self.y + sub_height, self.z, sub_width, sub_height, sub_depth) # B-NW
self.children[3] = TreeNode(self.x + sub_width, self.y + sub_height, self.z, sub_width, sub_height,
sub_depth) # B-NE
self.children[4] = TreeNode(self.x, self.y, self.z + sub_depth, sub_width, sub_height, sub_depth) # T-SW
self.children[5] = TreeNode(self.x + sub_width, self.y, self.z + sub_depth, sub_width, sub_height,
sub_depth) # T-SE
self.children[6] = TreeNode(self.x, self.y + sub_height, self.z + sub_depth, sub_width, sub_height,
sub_depth) # T-NW
self.children[7] = TreeNode(self.x + sub_width, self.y + sub_height, self.z + sub_depth, sub_width, sub_height,
sub_depth) # T-NE
def get_octant(self, particle):
"""Determine the octant index for a particle based on its position.
Args:
particle (Particle): The particle to determine the octant index for.
Returns:
int: Octant index
B - Bottom, T - Top
(0 for B-SW, 1 for B-SE, 2 for B-NW, 3 for B-NE,
4 for T-SW, 5 for T-SE, 6 for T-NW, 7 for T-NE).
"""
# Determine separating planes
mid_x = self.x + self.width / 2
mid_y = self.y + self.height / 2
mid_z = self.z + self.depth / 2
quad_index = (particle.x >= mid_x) + 2 * (particle.y >= mid_y) + 4 * (particle.z >= mid_z)
return quad_index
def print_tree(self, depth_=0):
"""Print the structure of the Octree.
Args:
depth_ (int): Current depth in the tree (for indentation in print).
"""
if self.particle:
print(
f"{' ' * depth_}Particle at ({round(self.particle.x,2)}, {round(self.particle.y,2)}, {round(self.particle.z,2)}) in Node ({round(self.x,2)}, {round(self.y,2)}, {round(self.z,2)}), width={round(self.width,2)}, height={round(self.height,2)}, depth={round(self.depth,2)}"
)
else:
print(
f"{' ' * depth_}Node ({round(self.x,2)}, {round(self.y,2)}, {round(self.z,2)}) - Width: {round(self.width,2)}, Height: {round(self.height,2)}, Depth: {round(self.depth,2)}"
)
for child in self.children:
if child:
child.print_tree(depth_ + 2)
def ComputeMassDistribution(self):
"""Compute the mass distribution for the tree nodes.
This function calculates the total mass and the center of mass
for each node in the Octree. It's a recursive function that
computes the mass distribution starting from the current node.
Note:
This method modifies the 'total_mass' and 'center_of_mass' attributes
for each node in the Octree.
Returns:
None
"""
if self.particle is not None:
# Node contains only one particle
self.center_of_mass = np.array([self.particle.x, self.particle.y, self.particle.z])
self.total_mass = self.particle.mass
else:
# Multiple particles in node
total_mass = 0
center_of_mass_accumulator = np.array([0.0, 0.0, 0.0])
for child in self.children:
if child is not None:
# Recursively compute mass distribution for child nodes
child.ComputeMassDistribution()
total_mass += child.total_mass
center_of_mass_accumulator += child.total_mass * child.center_of_mass
if total_mass > 0:
self.center_of_mass = center_of_mass_accumulator / total_mass
self.total_mass = total_mass
else:
# If total mass is 0 or no child nodes have mass, leave values as default
pass
#self.center_of_mass = np.array([(x+width)/2, (y+height)/2, (z+depth)/2])
#self.total_mass = 0
def CalculateForceFromTree(self, target_particle, theta=1.0):
"""Calculate the force on a target particle using the Barnes-Hut algorithm.
Args:
target_particle (Particle): The particle for which the force is calculated.
theta (float): The Barnes-Hut criterion for force approximation.
Returns:
np.ndarray: The total force acting on the target particle.
"""
total_force = np.array([0.0, 0.0, 0.0])
if self.particle is not None:
# Node contains only one particle
if self.particle != target_particle:
# Calculate gravitational force between target_particle and node's particle
force = self.GravitationalForce(target_particle, self.particle)
total_force += force
else:
if self.total_mass == 0:
return total_force
r = np.linalg.norm(
np.array([target_particle.x, target_particle.y, target_particle.z]) - self.center_of_mass)
d = max(self.width, self.height, self.depth)
if d / r < theta:
# Calculate gravitational force between target_particle and "node particle" representing cluster
force = self.GravitationalForce(
target_particle,
Particle(self.center_of_mass[0], self.center_of_mass[1], self.center_of_mass[2], self.total_mass))
total_force += force
else:
for child in self.children:
if child is not None:
# Recursively calculate force from child nodes
if target_particle is not None: # Check if the target_particle is not None
force = child.CalculateForceFromTree(target_particle)
total_force += force
return total_force
def CalculateForce(self, target_particle, particle, theta=1.0):
"""Calculate the gravitational force between two particles.
Args:
target_particle (Particle): The particle for which the force is calculated.
particle (Particle): The particle exerting the force.
Returns:
np.ndarray: The force vector acting on the target particle due to 'particle'.
"""
force = np.array([0.0, 0.0, 0.0])
print('function CalculateForce is called')
if self.particle is not None:
# Node contains only one particle
if self.particle != target_particle:
# Calculate gravitational force between target_particle and node's particle
force = self.GravitationalForce(target_particle, self.particle)
else:
if target_particle is not None and particle is not None: # Check if both particles are not None
r = np.linalg.norm(
np.array([target_particle.x, target_particle.y, target_particle.z]) -
np.array([particle.x, particle.y, particle.z]))
d = max(self.width, self.height, self.depth)
if d / r < theta:
# Calculate gravitational force between target_particle and particle
force = self.GravitationalForce(target_particle, particle)
else:
for child in self.children:
if child is not None:
# Recursively calculate force from child nodes
force += child.CalculateForce(target_particle, particle)
return force
def GravitationalForce(self, particle1, particle2):
"""Calculate the gravitational force between two particles.
Args:
particle1 (Particle): First particle.
particle2 (Particle): Second particle.
Returns:
np.ndarray: The gravitational force vector between particle1 and particle2.
"""
#G = 6.674 * (10 ** -11) # Gravitational constant
G = 1
dx = particle2.x - particle1.x
dy = particle2.y - particle1.y
dz = particle2.z - particle1.z
cutoff_radius = 5
r = max(np.sqrt(dx**2 + dy**2 + dz**2), cutoff_radius)
force_magnitude = G * particle1.mass * particle2.mass / (r**2)
force_x = force_magnitude * (dx / r)
force_y = force_magnitude * (dy / r)
force_z = force_magnitude * (dz / r)
return np.array([force_x, force_y, force_z])
# Helper method to retrieve all particles in the subtree
def particles_in_subtree(self):
"""Retrieve all particles in the subtree rooted at this node.
Returns:
list: A list of particles in the subtree rooted at this node.
"""
particles = []
if self.particle is not None:
particles.append(self.particle)
else:
for child in self.children:
if child is not None:
particles.extend(child.particles_in_subtree())
return len(particles), particles
def compute_center_of_mass(self):
"""Compute the center of mass for the node."""
print('Function compute_center_of_mass is called')
if self.particle is not None:
self.center_of_mass = np.array([self.particle.x, self.particle.y, self.particle.z])
self.mass = self.particle.mass
else:
total_mass = 0
center_of_mass_accumulator = np.array([0.0, 0.0, 0.0])
for child in self.children:
if child is not None:
child.compute_center_of_mass()
total_mass += child.mass
center_of_mass_accumulator += child.mass * child.center_of_mass
if total_mass > 0:
self.center_of_mass = center_of_mass_accumulator / total_mass
self.mass = total_mass
else:
self.center_of_mass = np.array([0.0, 0.0, 0.0])
self.mass = 0
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment