Newer
Older
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#ifdef HAVE_IPOPT
#undef HAVE_IPOPT
#endif
#include <exception>
#include <fstream>
#include <iostream>
#include <dune/common/bitsetvector.hh>
#include <dune/common/exceptions.hh>
#include <dune/common/fmatrix.hh>
#include <dune/common/function.hh>
#include <dune/common/fvector.hh>
#include <dune/common/parametertree.hh>
#include <dune/common/parametertreeparser.hh>
#include <dune/grid/common/mcmgmapper.hh>
#include <dune/istl/bcrsmatrix.hh>
#include <dune/istl/bvector.hh>
#include <dune/fufem/boundarypatch.hh>
#include <dune/solvers/norms/energynorm.hh>
#include <dune/solvers/solvers/loopsolver.hh>
#include <dune/solvers/solvers/solver.hh>
#include <dune/tnnmg/problem-classes/convexproblem.hh>
#include <dune/tectonic/geocoordinate.hh>
#include <dune/tectonic/myblockproblem.hh>
#include <dune/tectonic/globalfriction.hh>
#include <dune/fufem/hdf5/file.hh>
#include "diameter.hh"
#include "gridselector.hh"
#include "hdf5-writer.hh"
#include "hdf5/restart-io.hh"
#include "program_state.hh"
#include "one-body-problem-data/bc.hh"
#include "one-body-problem-data/mybody.hh"
#include "one-body-problem-data/mygeometry.hh"
#include "one-body-problem-data/myglobalfrictiondata.hh"
#include "one-body-problem-data/mygrid.hh"
#include "one-body-problem-data/weakpatch.hh"
#include "spatial-solving/solverfactory.hh"
#include "time-stepping/adaptivetimestepper.hh"
#include "time-stepping/rate.hh"
#include "time-stepping/state.hh"
#include "time-stepping/updaters.hh"
Dune::ParameterTree getParameters(int argc, char *argv[]) {
Dune::ParameterTreeParser::readINITree("/home/mi/podlesny/software/dune/dune-tectonic/src/one-body-problem.cfg", parset);
Dune::Fufem::formatString("/home/mi/podlesny/software/dune/dune-tectonic/src/one-body-problem-%dD.cfg", dims), parset);
Dune::ParameterTreeParser::readOptions(argc, argv, parset);
return parset;
}
static std::atomic<bool> terminationRequested(false);
void handleSignal(int signum) { terminationRequested = true; }
int main(int argc, char *argv[]) {
try {
char buffer[256];
char *val = getcwd(buffer, sizeof(buffer));
if (val) {
std::cout << buffer << std::endl;
std::cout << argv[0] << std::endl;
}
auto const parset = getParameters(argc, argv);
MyGeometry::render();
MyGeometry::write();
using GridView = Grid::LeafGridView;
using MyAssembler = MyAssembler<GridView, dims>;
using Matrix = MyAssembler::Matrix;
using Vector = MyAssembler::Vector;
using LocalVector = Vector::block_type;
using ScalarMatrix = MyAssembler::ScalarMatrix;
using ScalarVector = MyAssembler::ScalarVector;
auto const weakPatch =
getWeakPatch<LocalVector>(parset.sub("boundary.friction.weakening"));
GridConstructor<Grid> gridConstructor;
auto grid = gridConstructor.getGrid();
refine(*grid, weakPatch,
parset.get<double>("boundary.friction.smallestDiameter"));
double minDiameter = std::numeric_limits<double>::infinity();
double maxDiameter = 0.0;
for (auto &&e : elements(grid->leafGridView())) {
auto const geometry = e.geometry();
auto const diam = diameter(geometry);
minDiameter = std::min(minDiameter, diam);
maxDiameter = std::max(maxDiameter, diam);
}
std::cout << "min diameter: " << minDiameter << std::endl;
std::cout << "max diameter: " << maxDiameter << std::endl;
auto const leafView = grid->leafGridView();
auto const leafVertexCount = leafView.size(dims);
std::cout << "Number of DOFs: " << leafVertexCount << std::endl;
auto myFaces = gridConstructor.constructFaces(leafView);
BoundaryPatch<GridView> const neumannBoundary(leafView);
BoundaryPatch<GridView> const &frictionalBoundary = myFaces.lower;
BoundaryPatch<GridView> const &surface = myFaces.upper;
Dune::BitSetVector<dims> noNodes(leafVertexCount);
Dune::BitSetVector<dims> dirichletNodes(leafVertexCount);
for (size_t i = 0; i < leafVertexCount; ++i) {
if (myFaces.right.containsVertex(i))
dirichletNodes[i][0] = true;
if (myFaces.lower.containsVertex(i))
dirichletNodes[i][1] = true;
if (myFaces.front.containsVertex(i) || myFaces.back.containsVertex(i))
dirichletNodes[i][2] = true;
#endif
// Set up functions for time-dependent boundary conditions
using Function = Dune::VirtualFunction<double, double>;
Function const &velocityDirichletFunction = VelocityDirichletCondition();
Function const &neumannFunction = NeumannCondition();
MyBody<dims> const body(parset);
myAssembler.assembleElasticity(body.getYoungModulus(),
body.getPoissonRatio(), matrices.elasticity);
myAssembler.assembleViscosity(body.getShearViscosityField(),
body.getBulkViscosityField(),
matrices.damping);
myAssembler.assembleMass(body.getDensityField(), matrices.mass);
ScalarMatrix relativeFrictionalBoundaryMass;
myAssembler.assembleFrictionalBoundaryMass(frictionalBoundary,
relativeFrictionalBoundaryMass);
relativeFrictionalBoundaryMass /= frictionalBoundary.area();
EnergyNorm<ScalarMatrix, ScalarVector> const stateEnergyNorm(
relativeFrictionalBoundaryMass);
// Assemble forces
Vector gravityFunctional;
myAssembler.assembleBodyForce(body.getGravityField(), gravityFunctional);
// Problem formulation: right-hand side
std::function<void(double, Vector &)> computeExternalForces =
[&](double _relativeTime, Vector &_ell) {
myAssembler.assembleNeumann(neumannBoundary, _ell, neumannFunction,
_relativeTime);
_ell += gravityFunctional;
};
using MyProgramState = ProgramState<Vector, ScalarVector>;
MyProgramState programState(leafVertexCount);
auto const firstRestart = parset.get<size_t>("io.restarts.first");
auto const restartSpacing = parset.get<size_t>("io.restarts.spacing");
auto const writeRestarts = parset.get<bool>("io.restarts.write");
auto const writeData = parset.get<bool>("io.data.write");
bool const handleRestarts = writeRestarts or firstRestart > 0;
auto dataFile =
writeData ? std::make_unique<HDF5::File>("output.h5") : nullptr;
auto restartFile = handleRestarts
? std::make_unique<HDF5::File>(
"restarts.h5",
writeRestarts ? HDF5::Access::READWRITE
: HDF5::Access::READONLY)
: nullptr;
auto restartIO = handleRestarts
? std::make_unique<RestartIO<MyProgramState>>(
*restartFile, leafVertexCount)
: nullptr;
if (firstRestart > 0) // automatically adjusts the time and timestep
restartIO->read(firstRestart, programState);
else
programState.setupInitialConditions(parset, computeExternalForces,
matrices, myAssembler, dirichletNodes,
noNodes, frictionalBoundary, body);
MyGlobalFrictionData<LocalVector> frictionInfo(
parset.sub("boundary.friction"), weakPatch);
auto myGlobalFriction = myAssembler.assembleFrictionNonlinearity(
parset.get<Config::FrictionModel>("boundary.friction.frictionModel"),
frictionalBoundary, frictionInfo, programState.weightedNormalStress);
myGlobalFriction->updateAlpha(programState.alpha);
Vector vertexCoordinates(leafVertexCount);
{
Dune::MultipleCodimMultipleGeomTypeMapper<
GridView, Dune::MCMGVertexLayout> const vertexMapper(leafView, Dune::mcmgVertexLayout());
for (auto &&v : vertices(leafView))
vertexCoordinates[vertexMapper.index(v)] = geoToPoint(v.geometry());
using MyVertexBasis = typename MyAssembler::VertexBasis;
auto dataWriter =
writeData ? std::make_unique<
HDF5Writer<MyProgramState, MyVertexBasis, GridView>>(
*dataFile, vertexCoordinates, myAssembler.vertexBasis,
surface, frictionalBoundary, weakPatch)
: nullptr;
MyVTKWriter<MyVertexBasis, typename MyAssembler::CellBasis> const vtkWriter(
myAssembler.cellBasis, myAssembler.vertexBasis, "obs");
IterationRegister iterationCount;
auto const report = [&](bool initial = false) {
if (writeData) {
dataWriter->reportSolution(programState, *myGlobalFriction);
if (!initial)
dataWriter->reportIterations(programState, iterationCount);
dataFile->flush();
}
if (writeRestarts and !initial and
programState.timeStep % restartSpacing == 0) {
restartIO->write(programState);
restartFile->flush();
}
if (parset.get<bool>("io.printProgress"))
std::cout << "timeStep = " << std::setw(6) << programState.timeStep
<< ", time = " << std::setw(12) << programState.relativeTime
<< ", tau = " << std::setw(12) << programState.relativeTau
<< std::endl;
if (parset.get<bool>("io.vtk.write")) {
ScalarVector stress;
myAssembler.assembleVonMisesStress(body.getYoungModulus(),
body.getPoissonRatio(),
programState.u, stress);
vtkWriter.write(programState.timeStep, programState.u, programState.v,
programState.alpha, stress);
}
};
using NonlinearFactory = SolverFactory<
dims,
MyBlockProblem<ConvexProblem<GlobalFriction<Matrix, Vector>, Matrix>>,
Grid>;
NonlinearFactory factory(parset.sub("solver.tnnmg"), *grid, dirichletNodes);
using MyUpdater = Updaters<RateUpdater<Vector, Matrix, Function, dims>,
StateUpdater<ScalarVector, Vector>>;
MyUpdater current(
initRateUpdater(parset.get<Config::scheme>("timeSteps.scheme"),
velocityDirichletFunction, dirichletNodes, matrices,
programState.u, programState.v, programState.a),
initStateUpdater<ScalarVector, Vector>(
parset.get<Config::stateModel>("boundary.friction.stateModel"),
programState.alpha, *frictionalBoundary.getVertices(),
parset.get<double>("boundary.friction.L"),
parset.get<double>("boundary.friction.V0")));
auto const refinementTolerance =
parset.get<double>("timeSteps.refinementTolerance");
auto const mustRefine = [&](MyUpdater &coarseUpdater,
MyUpdater &fineUpdater) {
coarseUpdater.state_->extractAlpha(coarseAlpha);
fineUpdater.state_->extractAlpha(fineAlpha);
return stateEnergyNorm.diff(fineAlpha, coarseAlpha) > refinementTolerance;
};
std::signal(SIGXCPU, handleSignal);
std::signal(SIGINT, handleSignal);
std::signal(SIGTERM, handleSignal);
AdaptiveTimeStepper<NonlinearFactory, MyUpdater,
EnergyNorm<ScalarMatrix, ScalarVector>>
adaptiveTimeStepper(factory, parset, myGlobalFriction, current,
programState.relativeTime, programState.relativeTau,
computeExternalForces, stateEnergyNorm, mustRefine);
while (!adaptiveTimeStepper.reachedEnd()) {
iterationCount = adaptiveTimeStepper.advance();
programState.relativeTime = adaptiveTimeStepper.relativeTime_;
programState.relativeTau = adaptiveTimeStepper.relativeTau_;
current.rate_->extractDisplacement(programState.u);
current.rate_->extractVelocity(programState.v);
current.rate_->extractAcceleration(programState.a);
current.state_->extractAlpha(programState.alpha);
if (terminationRequested) {
std::cerr << "Terminating prematurely" << std::endl;
break;
}
Dune::derr << "Dune reported error: " << e << std::endl;
std::cerr << "Standard exception: " << e.what() << std::endl;
}
}