Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
D
dune-tectonic
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Deploy
Releases
Container Registry
Model registry
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
podlesny
dune-tectonic
Commits
f23df2c7
Commit
f23df2c7
authored
12 years ago
by
Elias Pipping
Committed by
Elias Pipping
12 years ago
Browse files
Options
Downloads
Patches
Plain Diff
Convert timestepping.cc to org-babel
parent
e42838d2
No related branches found
No related tags found
No related merge requests found
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
src/.gitignore
+1
-0
1 addition, 0 deletions
src/.gitignore
src/Makefile.am
+5
-0
5 additions, 0 deletions
src/Makefile.am
src/timestepping.cc
+0
-211
0 additions, 211 deletions
src/timestepping.cc
src/timestepping.org
+339
-0
339 additions, 0 deletions
src/timestepping.org
with
345 additions
and
211 deletions
src/.gitignore
0 → 100644
+
1
−
0
View file @
f23df2c7
timestepping.cc
This diff is collapsed.
Click to expand it.
src/Makefile.am
+
5
−
0
View file @
f23df2c7
...
...
@@ -141,3 +141,8 @@ DISTCHECK_CONFIGURE_FLAGS = \
CXX
=
"
$(
CXX
)
"
CC
=
"
$(
CC
)
"
include
$(top_srcdir)/am/global-rules
$(srcdir)/timestepping.cc
:
$(srcdir)/timestepping.org
emacs
-Q
--batch
--eval
\
"(let (vc-handled-backends)
\
(org-babel-tangle-file
\"
$<
\"
nil 'c++))"
This diff is collapsed.
Click to expand it.
src/timestepping.cc
deleted
100644 → 0
+
0
−
211
View file @
e42838d2
#include
<dune/fufem/arithmetic.hh>
template
<
class
VectorType
,
class
MatrixType
,
class
FunctionType
,
int
dim
>
class
TimeSteppingScheme
{
public:
TimeSteppingScheme
(
VectorType
const
&
_ell
,
MatrixType
const
&
_A
,
VectorType
const
&
_u_old
,
Dune
::
BitSetVector
<
dim
>
const
&
_dirichletNodes
,
FunctionType
const
&
_dirichletFunction
,
double
_time
,
double
_tau
)
:
ell
(
_ell
),
A
(
_A
),
u_old
(
_u_old
),
dirichletNodes
(
_dirichletNodes
),
dirichletFunction
(
_dirichletFunction
),
time
(
_time
),
tau
(
_tau
)
{}
virtual
~
TimeSteppingScheme
()
{}
void
virtual
setup
(
VectorType
&
problem_rhs
,
VectorType
&
problem_iterate
,
MatrixType
&
problem_A
)
const
=
0
;
void
virtual
extractSolution
(
VectorType
const
&
problem_iterate
,
VectorType
&
solution
)
const
=
0
;
void
virtual
extractVelocity
(
VectorType
const
&
problem_iterate
,
VectorType
&
velocity
)
const
=
0
;
protected
:
VectorType
const
&
ell
;
MatrixType
const
&
A
;
VectorType
const
&
u_old
;
Dune
::
BitSetVector
<
dim
>
const
&
dirichletNodes
;
FunctionType
const
&
dirichletFunction
;
double
const
time
;
double
const
tau
;
};
template
<
class
VectorType
,
class
MatrixType
,
class
FunctionType
,
int
dim
>
class
ImplicitEuler
:
public
TimeSteppingScheme
<
VectorType
,
MatrixType
,
FunctionType
,
dim
>
{
public:
ImplicitEuler
(
VectorType
const
&
_ell
,
MatrixType
const
&
_A
,
VectorType
const
&
_u_old
,
VectorType
const
*
_u_old_old_ptr
,
// FIXME: this should not be necessary
Dune
::
BitSetVector
<
dim
>
const
&
_dirichletNodes
,
FunctionType
const
&
_dirichletFunction
,
double
_time
,
double
_tau
)
:
TimeSteppingScheme
<
VectorType
,
MatrixType
,
FunctionType
,
dim
>
(
_ell
,
_A
,
_u_old
,
_dirichletNodes
,
_dirichletFunction
,
_time
,
_tau
),
u_old_old_ptr
(
_u_old_old_ptr
)
{}
void
virtual
setup
(
VectorType
&
problem_rhs
,
VectorType
&
problem_iterate
,
MatrixType
&
problem_A
)
const
{
problem_rhs
=
this
->
ell
;
this
->
A
.
mmv
(
this
->
u_old
,
problem_rhs
);
problem_A
=
this
->
A
;
problem_A
*=
this
->
tau
;
// Use the old velocity as an initial iterate if possible
if
(
u_old_old_ptr
)
{
problem_iterate
=
this
->
u_old
;
problem_iterate
-=
*
u_old_old_ptr
;
problem_iterate
/=
this
->
tau
;
}
else
problem_iterate
=
0.0
;
for
(
size_t
i
=
0
;
i
<
this
->
dirichletNodes
.
size
();
++
i
)
if
(
this
->
dirichletNodes
[
i
].
count
()
==
dim
)
{
problem_iterate
[
i
]
=
0
;
this
->
dirichletFunction
.
evaluate
(
this
->
time
,
problem_iterate
[
i
][
0
]);
}
else
if
(
this
->
dirichletNodes
[
i
][
1
])
problem_iterate
[
i
][
1
]
=
0
;
// Y direction prescribed
}
void
virtual
extractSolution
(
VectorType
const
&
problem_iterate
,
VectorType
&
solution
)
const
{
solution
=
this
->
u_old
;
solution
.
axpy
(
this
->
tau
,
problem_iterate
);
}
void
virtual
extractVelocity
(
VectorType
const
&
problem_iterate
,
VectorType
&
velocity
)
const
{
velocity
=
problem_iterate
;
}
private
:
VectorType
const
*
u_old_old_ptr
;
};
template
<
class
VectorType
,
class
MatrixType
,
class
FunctionType
,
int
dim
>
class
ImplicitTwoStep
:
public
TimeSteppingScheme
<
VectorType
,
MatrixType
,
FunctionType
,
dim
>
{
public:
ImplicitTwoStep
(
VectorType
const
&
_ell
,
MatrixType
const
&
_A
,
VectorType
const
&
_u_old
,
VectorType
const
*
_u_old_old_ptr
,
Dune
::
BitSetVector
<
dim
>
const
&
_dirichletNodes
,
FunctionType
const
&
_dirichletFunction
,
double
_time
,
double
_tau
)
:
TimeSteppingScheme
<
VectorType
,
MatrixType
,
FunctionType
,
dim
>
(
_ell
,
_A
,
_u_old
,
_dirichletNodes
,
_dirichletFunction
,
_time
,
_tau
),
u_old_old_ptr
(
_u_old_old_ptr
)
{}
void
virtual
setup
(
VectorType
&
problem_rhs
,
VectorType
&
problem_iterate
,
MatrixType
&
problem_A
)
const
{
problem_rhs
=
this
->
ell
;
this
->
A
.
usmv
(
-
4.0
/
3.0
,
this
->
u_old
,
problem_rhs
);
this
->
A
.
usmv
(
+
1.0
/
3.0
,
*
u_old_old_ptr
,
problem_rhs
);
problem_A
=
this
->
A
;
problem_A
*=
2.0
/
3.0
*
this
->
tau
;
// Use the old velocity as an initial iterate
problem_iterate
=
this
->
u_old
;
problem_iterate
-=
*
u_old_old_ptr
;
problem_iterate
/=
this
->
tau
;
for
(
size_t
i
=
0
;
i
<
this
->
dirichletNodes
.
size
();
++
i
)
if
(
this
->
dirichletNodes
[
i
].
count
()
==
dim
)
{
problem_iterate
[
i
]
=
0
;
this
->
dirichletFunction
.
evaluate
(
this
->
time
,
problem_iterate
[
i
][
0
]);
}
else
if
(
this
->
dirichletNodes
[
i
][
1
])
problem_iterate
[
i
][
1
]
=
0
;
// Y direction prescribed
}
void
virtual
extractSolution
(
VectorType
const
&
problem_iterate
,
VectorType
&
solution
)
const
{
solution
=
problem_iterate
;
solution
*=
this
->
tau
;
solution
.
axpy
(
2
,
this
->
u_old
);
solution
.
axpy
(
-
.5
,
*
u_old_old_ptr
);
solution
*=
2.0
/
3.0
;
// Check if we split correctly
{
VectorType
test
=
problem_iterate
;
test
*=
this
->
tau
;
test
.
axpy
(
-
1.5
,
solution
);
test
.
axpy
(
+
2
,
this
->
u_old
);
test
.
axpy
(
-
.5
,
*
u_old_old_ptr
);
assert
(
test
.
two_norm
()
<
1e-10
);
}
}
void
virtual
extractVelocity
(
VectorType
const
&
problem_iterate
,
VectorType
&
velocity
)
const
{
velocity
=
problem_iterate
;
}
private
:
VectorType
const
*
u_old_old_ptr
;
};
template
<
class
VectorType
,
class
MatrixType
,
class
FunctionType
,
int
dim
>
class
Newmark
:
public
TimeSteppingScheme
<
VectorType
,
MatrixType
,
FunctionType
,
dim
>
{
public:
Newmark
(
VectorType
const
&
_ell
,
MatrixType
const
&
_A
,
MatrixType
const
&
_B
,
VectorType
const
&
_u_old
,
VectorType
const
&
_ud_old
,
VectorType
const
&
_udd_old
,
Dune
::
BitSetVector
<
dim
>
const
&
_dirichletNodes
,
FunctionType
const
&
_dirichletFunction
,
double
_time
,
double
_tau
)
:
TimeSteppingScheme
<
VectorType
,
MatrixType
,
FunctionType
,
dim
>
(
_ell
,
_A
,
_u_old
,
_dirichletNodes
,
_dirichletFunction
,
_time
,
_tau
),
B
(
_B
),
ud_old
(
_ud_old
),
udd_old
(
_udd_old
)
{}
void
virtual
setup
(
VectorType
&
problem_rhs
,
VectorType
&
problem_iterate
,
MatrixType
&
problem_A
)
const
{
problem_rhs
=
this
->
ell
;
/* */
B
.
usmv
(
2.0
/
this
->
tau
,
ud_old
,
problem_rhs
);
/* */
B
.
usmv
(
1.0
,
udd_old
,
problem_rhs
);
this
->
A
.
usmv
(
-
1.0
,
this
->
u_old
,
problem_rhs
);
this
->
A
.
usmv
(
-
this
->
tau
/
2.0
,
ud_old
,
problem_rhs
);
// For fixed tau, we'd only really have to do this once
problem_A
=
this
->
A
;
problem_A
*=
this
->
tau
/
2.0
;
Arithmetic
::
addProduct
(
problem_A
,
2.0
/
this
->
tau
,
B
);
// ud_old makes a good initial iterate; we could use anything, though
problem_iterate
=
ud_old
;
for
(
size_t
i
=
0
;
i
<
this
->
dirichletNodes
.
size
();
++
i
)
if
(
this
->
dirichletNodes
[
i
].
count
()
==
dim
)
{
problem_iterate
[
i
]
=
0
;
this
->
dirichletFunction
.
evaluate
(
this
->
time
,
problem_iterate
[
i
][
0
]);
}
else
if
(
this
->
dirichletNodes
[
i
][
1
])
problem_iterate
[
i
][
1
]
=
0
;
// Y direction prescribed
}
// u1 = u0 + tau/2 (du1 + du0)
void
virtual
extractSolution
(
VectorType
const
&
problem_iterate
,
VectorType
&
solution
)
const
{
solution
=
this
->
u_old
;
Arithmetic
::
addProduct
(
solution
,
this
->
tau
/
2.0
,
problem_iterate
);
// ud
Arithmetic
::
addProduct
(
solution
,
this
->
tau
/
2.0
,
ud_old
);
}
void
virtual
extractVelocity
(
VectorType
const
&
problem_iterate
,
VectorType
&
velocity
)
const
{
velocity
=
problem_iterate
;
}
private
:
MatrixType
const
&
B
;
VectorType
const
&
ud_old
;
VectorType
const
&
udd_old
;
};
This diff is collapsed.
Click to expand it.
src/timestepping.org
0 → 100644
+
339
−
0
View file @
f23df2c7
#+name: includes
#+begin_src c++
#include <dune/fufem/arithmetic.hh>
#+end_src
#+name: preamble
#+begin_src latex
\documentclass{scrartcl}
\usepackage{amsmath}
\begin{document}
#+end_src
* Abstract TimeSteppingScheme
#+name: TimeSteppingScheme
#+begin_src c++
template <class VectorType, class MatrixType, class FunctionType, int dim>
class TimeSteppingScheme
{
public:
TimeSteppingScheme(VectorType const &_ell,
MatrixType const &_A,
VectorType const &_u_old,
Dune::BitSetVector<dim> const &_dirichletNodes,
FunctionType const &_dirichletFunction,
double _time,
double _tau)
: ell(_ell),
A(_A),
u_old(_u_old),
dirichletNodes(_dirichletNodes),
dirichletFunction(_dirichletFunction),
time(_time),
tau(_tau)
{}
virtual ~TimeSteppingScheme()
{}
void virtual setup(VectorType &problem_rhs,
VectorType &problem_iterate,
MatrixType &problem_A) const = 0;
void virtual extractSolution(VectorType const &problem_iterate,
VectorType &solution) const = 0;
void virtual extractVelocity(VectorType const &problem_iterate,
VectorType &velocity) const = 0;
protected:
VectorType const ℓ
MatrixType const &A;
VectorType const &u_old;
Dune::BitSetVector<dim> const &dirichletNodes;
FunctionType const &dirichletFunction;
double const time;
double const tau;
};
#+end_src
* TimeSteppingScheme: Implicit Euler
#+name: ImplicitEuler
#+begin_src c++
template <class VectorType, class MatrixType, class FunctionType, int dim>
class ImplicitEuler : public TimeSteppingScheme<VectorType, MatrixType, FunctionType, dim>
{
public:
ImplicitEuler(VectorType const &_ell,
MatrixType const &_A,
VectorType const &_u_old,
VectorType const *_u_old_old_ptr, // FIXME: this should not be necessary
Dune::BitSetVector<dim> const &_dirichletNodes,
FunctionType const &_dirichletFunction,
double _time,
double _tau)
: TimeSteppingScheme<VectorType, MatrixType, FunctionType, dim>
(_ell, _A, _u_old, _dirichletNodes, _dirichletFunction, _time, _tau),
u_old_old_ptr(_u_old_old_ptr)
{}
void virtual
setup(VectorType &problem_rhs,
VectorType &problem_iterate,
MatrixType &problem_A) const
{
problem_rhs = this->ell;
this->A.mmv(this->u_old, problem_rhs);
problem_A = this->A;
problem_A *= this->tau;
// Use the old velocity as an initial iterate if possible
if (u_old_old_ptr) {
problem_iterate = this->u_old;
problem_iterate -= *u_old_old_ptr;
problem_iterate /= this->tau;
} else
problem_iterate = 0.0;
for (size_t i=0; i < this->dirichletNodes.size(); ++i)
if (this->dirichletNodes[i].count() == dim) {
problem_iterate[i] = 0;
this->dirichletFunction.evaluate(this->time, problem_iterate[i][0]);
} else if (this->dirichletNodes[i][1])
problem_iterate[i][1] = 0; // Y direction prescribed
}
void virtual extractSolution(VectorType const &problem_iterate,
VectorType &solution) const
{
solution = this->u_old;
solution.axpy(this->tau, problem_iterate);
}
void virtual extractVelocity(VectorType const &problem_iterate,
VectorType &velocity) const
{
velocity = problem_iterate;
}
private:
VectorType const *u_old_old_ptr;
};
#+end_src
* TimeSteppingScheme: Implicit Two-Step
#+begin_src latex :tangle twostep.tex :noweb yes
\documentclass{scrartcl}
\usepackage{amsmath}
\begin{document}
We start out with
\begin{align}
a(u_1, v - \dot u_1) + j(v) - j(\dot u_1) \ge \ell(v-\dot u_1)
\end{align}
With the two-step implicit scheme
\begin{equation*}
\tau \dot u_1 = \frac 32 u_1 - 2 u_0 + \frac 12 u_{-1}
\end{equation*}
or equivalently
\begin{equation*}
\frac 23 \left( \tau \dot u_1 + 2 u_0 - \frac 12 u_{-1} \right) = u_1
\end{equation*}
we obtain
\begin{equation*}
\frac 23 \tau a(\dot u_1, v - \dot u_1) + j(v) - j(\dot u_1) \ge \ell(v-\dot u_1) - a\left(\frac 43 u_0 - \frac 13 u_{-1}, v - \dot u_1\right)
\end{equation*}
\end{document}
#+end_src
#+name: ImplicitTwoStep
#+begin_src c++
template <class VectorType, class MatrixType, class FunctionType, int dim>
class ImplicitTwoStep : public TimeSteppingScheme<VectorType, MatrixType, FunctionType, dim>
{
public:
ImplicitTwoStep(VectorType const &_ell,
MatrixType const &_A,
VectorType const &_u_old,
VectorType const *_u_old_old_ptr,
Dune::BitSetVector<dim> const &_dirichletNodes,
FunctionType const &_dirichletFunction,
double _time,
double _tau)
: TimeSteppingScheme<VectorType, MatrixType, FunctionType, dim>
(_ell, _A, _u_old, _dirichletNodes, _dirichletFunction, _time, _tau),
u_old_old_ptr(_u_old_old_ptr)
{}
void virtual setup(VectorType &problem_rhs,
VectorType &problem_iterate,
MatrixType &problem_A) const
{
problem_rhs = this->ell;
this->A.usmv(-4.0/3.0, this->u_old, problem_rhs);
this->A.usmv(+1.0/3.0, *u_old_old_ptr, problem_rhs);
problem_A = this->A;
problem_A *= 2.0/3.0 * this->tau;
// Use the old velocity as an initial iterate
problem_iterate = this->u_old;
problem_iterate -= *u_old_old_ptr;
problem_iterate /= this->tau;
for (size_t i=0; i < this->dirichletNodes.size(); ++i)
if (this->dirichletNodes[i].count() == dim) {
problem_iterate[i] = 0;
this->dirichletFunction.evaluate(this->time, problem_iterate[i][0]);
} else if (this->dirichletNodes[i][1])
problem_iterate[i][1] = 0; // Y direction prescribed
}
void virtual extractSolution(VectorType const &problem_iterate,
VectorType &solution) const
{
solution = problem_iterate;
solution *= this->tau;
solution.axpy(2, this->u_old);
solution.axpy(-.5, *u_old_old_ptr);
solution *= 2.0/3.0;
// Check if we split correctly
{
VectorType test = problem_iterate;
test *= this->tau;
test.axpy(-1.5, solution);
test.axpy(+2, this->u_old);
test.axpy(-.5, *u_old_old_ptr);
assert(test.two_norm() < 1e-10);
}
}
void virtual extractVelocity(VectorType const &problem_iterate,
VectorType &velocity) const
{
velocity = problem_iterate;
}
private:
VectorType const *u_old_old_ptr;
};
#+end_src
* TimeSteppingScheme: Newmark
#+begin_src latex :tangle newmark.tex :noweb yes
<<preamble>>
\noindent The Newmark scheme in its classical form with $\gamma = 1/2$
and $\beta = 1/4$ reads
\begin{align}
\label{eq:1} \dot u_1
&= \dot u_0 + \frac \tau 2 (\ddot u_0 + \ddot u_1 )\\
\label{eq:2} u_1
&= u_0 + \tau \dot u_0 + \frac {\tau^2}4 ( \ddot u_0 + \ddot u_1 )\text.
\intertext{We can also write \eqref{eq:1} as}
\label{eq:3} \ddot u_1
&= \frac 2\tau (\dot u_1 - \dot u_0) - \ddot u_0
\intertext{so that it yields}
\label{eq:4} u_1
&= u_0 + \tau \dot u_0 + \frac {\tau^2}4 \ddot u_0 + \frac {\tau^2}4 \left( \frac 2\tau (\dot u_1 - \dot u_0) - \ddot u_0\right)\\
&= u_0 + \tau \dot u_0 + \frac \tau 2 (\dot u_1 - \dot u_0)\nonumber\\
&= u_0 + \frac \tau 2 (\dot u_1 + \dot u_0)\nonumber
\end{align}
in conjunction with \eqref{eq:2}. If we now consider the EVI
\begin{align*}
b(\ddot u_1, v - \dot u_1) + a(u_1, v - \dot u_1) + j(v) - j(\dot u_1)
&\ge \ell (v - \dot u_1)
\intertext{with unknowns $u_1$, $\dot u_1$, and $\ddot u_1$, we first derive}
\frac 2\tau b(\dot u_1, v - \dot u_1) + a(u_1, v - \dot u_1) + j(v) - j(\dot u_1)
&\ge \ell (v - \dot u_1) + b\left(\frac 2\tau \dot u_0 + \ddot u_0, v - \dot u_1\right)
\intertext{from \eqref{eq:3} and then}
\frac 2\tau b(\dot u_1, v - \dot u_1) + \frac \tau 2 a(\dot u_1, v - \dot u_1) + j(v) - j(\dot u_1)
&\ge \ell (v - \dot u_1) + b\left(\frac 2\tau \dot u_0 + \ddot u_0, v - \dot u_1\right)\\
&\quad - a\left(u_0 + \frac \tau 2 \dot u_0, v - \dot u_1\right)
\end{align*}
from \eqref{eq:4}. The only unknown is now $\dot u_1$.
\end{document}
#+end_src
#+name: Newmark
#+begin_src c++
template <class VectorType, class MatrixType, class FunctionType, int dim>
class Newmark : public TimeSteppingScheme<VectorType, MatrixType, FunctionType, dim>
{
public:
Newmark(VectorType const &_ell,
MatrixType const &_A,
MatrixType const &_B,
VectorType const &_u_old,
VectorType const &_ud_old,
VectorType const &_udd_old,
Dune::BitSetVector<dim> const &_dirichletNodes,
FunctionType const &_dirichletFunction,
double _time,
double _tau)
: TimeSteppingScheme<VectorType, MatrixType, FunctionType, dim>
(_ell, _A, _u_old, _dirichletNodes, _dirichletFunction, _time, _tau),
B(_B),
ud_old(_ud_old),
udd_old(_udd_old)
{}
void virtual
setup(VectorType &problem_rhs,
VectorType &problem_iterate,
MatrixType &problem_A) const
{
problem_rhs = this->ell;
/* */ B.usmv( 2.0/this->tau, ud_old, problem_rhs);
/* */ B.usmv( 1.0, udd_old, problem_rhs);
this->A.usmv( -1.0, this->u_old, problem_rhs);
this->A.usmv(-this->tau/2.0, ud_old, problem_rhs);
// For fixed tau, we'd only really have to do this once
problem_A = this->A;
problem_A *= this->tau/2.0;
Arithmetic::addProduct(problem_A, 2.0/this->tau, B);
// ud_old makes a good initial iterate; we could use anything, though
problem_iterate = ud_old;
for (size_t i=0; i < this->dirichletNodes.size(); ++i)
if (this->dirichletNodes[i].count() == dim) {
problem_iterate[i] = 0;
this->dirichletFunction.evaluate(this->time, problem_iterate[i][0]);
} else if (this->dirichletNodes[i][1])
problem_iterate[i][1] = 0; // Y direction prescribed
}
// u1 = u0 + tau/2 (du1 + du0)
void virtual extractSolution(VectorType const &problem_iterate,
VectorType &solution) const
{
solution = this->u_old;
Arithmetic::addProduct(solution, this->tau / 2.0, problem_iterate); // ud
Arithmetic::addProduct(solution, this->tau / 2.0, ud_old);
}
void virtual extractVelocity(VectorType const &problem_iterate,
VectorType &velocity) const
{
velocity = problem_iterate;
}
private:
MatrixType const &B;
VectorType const &ud_old;
VectorType const &udd_old;
};
#+end_src
* C++ code generation
#+name: timestepping
#+begin_src c++ :tangle timestepping.cc :noweb yes
<<includes>>
<<TimeSteppingScheme>>
<<ImplicitEuler>>
<<ImplicitTwoStep>>
<<Newmark>>
#+end_src
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment