Skip to content
Snippets Groups Projects
esp32-c3-uart-interface.c 3.23 KiB
Newer Older
#include "esp32-c3-uart-interface.h"
#include <stdbool.h>

static void config_clock_freq_and_baud_rate(){
  //freq = clock source rate / (UART_SCLK_DIV_NUM+UART_SCLK_DIV_A/UART_SCLK_DIV_B)
  // baud rate = freq / (UART_CLKDIV + UART_CLKDIV_FRAG / 16)

  uart_clk_conf_reg_t *clk_config = UART_CLK_CONF_REG(1);
  uart_clkdiv_reg_t *clk_div = UART_CLKDIV_REG(1);

  // select the clock source via UART_SCLK_SEL;  
  // 1 is ABP_CLK with 80 MHz
  // 2 is RC_FAST_CLK with default of 17.5 MHz
  // 3 is XTAL_CLK with 40 MHz
  clk_config->sclk_sel = 1;

  // dividing clock to 6 Mhz (divisor should be 13+1/3)
  // UART_SCLK_DIV_NUM
  clk_config->sclk_div_num=13;
  clk_config->sclk_div_a=1;
  clk_config->sclk_div_b=3;

  // calculate Baud rate to be 9600 (6Mhz/625)
  clk_div->div_int=625;
}

void config_uart(){
  // wait for UART_REG(1)_UPDATE to become 0, which indicates the completion of the last synchronization;
  uart_id_reg_t *id = UART_ID_REG(1);
  uart_conf0_reg_t *conf0 = UART_CONF0_REG(1);

  while((bool)(id->reg_update)){
    __asm__("ADDI x0, x0, 0");
  }

  // configure static registers (if any) following Section 26.5.1.2;

  // set clock freq to 6MHz
  // baud rate to 9600
  config_clock_freq_and_baud_rate();

  // configure data length via UART_BIT_NUM;
  conf0->bit_num=3;

  // configure odd or even parity check via UART_PARITY_EN and UART_PARITY;
  conf0->parity=0;
  conf0->parity_en=0;
  
  // synchronize the configured values to the Core Clock domain by writing 1 to UART_REG_UPDATE.
  id->reg_update=1;
}

void enable_uart_transmitter(){
  uart_conf1_reg_t *uart_conf1 = UART_CONF1_REG(1);
  uart_fifo_reg_t *fifo = UART_FIFO_REG(1);
  uart_int_clr_reg_t *int_clr = UART_INT_CLR_REG(1);
  uart_int_ena_reg_t *int_ena = UART_INT_ENA_REG(1);

  // configure TX FIFO’s empty threshold via UART_TXFIFO_EMPTY_THRHD;
  uart_conf1->txfifo_empty_thrhd=4;

  // disable UART_TXFIFO_EMPTY_INT interrupt by clearing UART_TXFIFO_EMPTY_INT_ENA;
  int_ena->txfifo_empty_int_ena=0;

  // write data to be sent to UART_RXFIFO_RD_BYTE;
  fifo->rw_byte=63;

  // clear UART_TXFIFO_EMPTY_INT interrupt by setting UART_TXFIFO_EMPTY_INT_CLR;
  int_clr->txfifo_empty_int_clr=1;

  // enable UART_TXFIFO_EMPTY_INT interrupt by setting UART_TXFIFO_EMPTY_INT_ENA;
  int_ena->txfifo_empty_int_ena=1;

  // detect UART_TXFIFO_EMPTY_INT and wait for the completion of data transmission.
}

void init_uart(){
  // from technical reference manual 543 f

  uart_id_reg_t *id = UART_ID_REG(1);
  uart_clk_conf_reg_t *clk_config = UART_CLK_CONF_REG(1);
  system_perip_clk_en0_reg_t *perip_clk_en0 = SYSTEM_PERIP_CLK_EN0_REG;
  system_perip_rst_en0_reg_t *perip_rst_en0 = SYSTEM_PERIP_RST_EN0_REG;

  // enable the clock for UART RAM by setting SYSTEM_UART_MEM_CLK_EN to 1;
  perip_clk_en0->uart_mem_clk_en = 1;

  // enable APB_CLK for UARTn by setting SYSTEM_UARTn_CLK_EN to 1;
  perip_clk_en0->uart1_clk_en = 1;

  // clear SYSTEM_UARTn_RST;
  perip_rst_en0->uart1_rst = 0;

  // write 1 to UART_RST_CORE;
  clk_config->rst_core = 1;

  // write 1 to SYSTEM_UARTn_RST;
  perip_rst_en0->uart1_rst = 1;

  // clear SYSTEM_UARTn_RST;
  perip_rst_en0->uart1_rst = 0;

  // clear UART_RST_CORE;
  clk_config->rst_core = 0;

  // enable register synchronization by clearing UART_UPDATE_CTRL
  id->update_ctrl = 0;
}