Skip to content
Snippets Groups Projects
routing.py 6.67 KiB
Newer Older
markn92's avatar
markn92 committed
"""Module contains the main algorithm."""
from typing import Dict, List, Tuple, Set
markn92's avatar
markn92 committed
from math import inf

markn92's avatar
markn92 committed
import networkx as nx
markn92's avatar
markn92 committed
from evrouting.T import Node, SoC
markn92's avatar
markn92 committed
from evrouting.utils import PriorityQueue
markn92's avatar
markn92 committed
from evrouting.graph_tools import distance
from evrouting.charge.T import SoCFunction, Label
from evrouting.charge.utils import LabelPriorityQueue, keys
markn92's avatar
markn92 committed
from evrouting.charge.factories import (
    ChargingFunctionMap,
markn92's avatar
markn92 committed
    SoCFunctionFactory,
    SoCProfileFactory
markn92's avatar
markn92 committed
)
markn92's avatar
markn92 committed

markn92's avatar
markn92 committed
def shortest_path(G: nx.Graph, charging_stations: Set[Node], s: Node, t: Node,
markn92's avatar
markn92 committed
                  initial_soc: SoC, final_soc: SoC, capacity: SoC):
markn92's avatar
markn92 committed
    """
    Calculates shortest path using the CHarge algorithm.

markn92's avatar
markn92 committed
    :param G: Graph to work on
    :param charging_stations: Set containing identifiers of all
        charging stations
    :param s: Start Node
    :param t: End Node
    :param initial_soc: SoC at s
    :param final_soc: SoC at t
    :param capacity: Battery capacity

markn92's avatar
markn92 committed
    :return:
    """
markn92's avatar
markn92 committed
    t, factories, queues = _setup(
        G, charging_stations, capacity, initial_soc, final_soc, s, t
    )
markn92's avatar
markn92 committed
    f_soc_factory: SoCFunctionFactory = factories['f_soc']
    soc_profile_factory: SoCProfileFactory = factories['soc_profile']
    cf_map: ChargingFunctionMap = factories['cf']
markn92's avatar
markn92 committed
    l_set: Dict[int, List[Label]] = queues['settled labels']
    l_uns: Dict[int, LabelPriorityQueue] = queues['unsettled labels']
    prio_queue: PriorityQueue = queues['priority queue']
markn92's avatar
markn92 committed
    while prio_queue:
markn92's avatar
markn92 committed
        node_min: Node = prio_queue.peak_min()
markn92's avatar
markn92 committed
        label_node_min: Label = l_uns[node_min].delete_min()
markn92's avatar
markn92 committed
        l_set[node_min].append(label_node_min)
markn92's avatar
markn92 committed
        if node_min == t:
            return f_soc_factory(label_node_min).minimum
markn92's avatar
markn92 committed
        # Handle charging stations
markn92's avatar
markn92 committed
        if node_min in charging_stations and node_min != label_node_min.last_cs:
markn92's avatar
markn92 committed
            f_soc: SoCFunction = f_soc_factory(label_node_min)
            t_charge = f_soc.calc_optimal_t_charge(cf_map[node_min])
markn92's avatar
markn92 committed

            if t_charge is not None:
markn92's avatar
markn92 committed
                # Spawn new label at t_charge
markn92's avatar
markn92 committed
                l_uns[node_min].insert(
markn92's avatar
markn92 committed
                    Label(
markn92's avatar
markn92 committed
                        t_trip=label_node_min.t_trip + t_charge,
                        soc_last_cs=f_soc(label_node_min.t_trip + t_charge),
                        last_cs=node_min,
                        soc_profile_cs_v=soc_profile_factory(node_min)
markn92's avatar
markn92 committed
                    )
                )
markn92's avatar
markn92 committed
        # Update priority queue. This node might have gotten a new
        # minimum label spawned is th previous step.
        try:
            prio_queue.insert(
markn92's avatar
markn92 committed
                item=node_min,
                **keys(f_soc_factory(l_uns[node_min].peak_min()))
            )
        except KeyError:
            # l_uns[v] empty
            prio_queue.delete_min()
markn92's avatar
markn92 committed

        # scan outgoing arcs
markn92's avatar
markn92 committed
        for n in G.neighbors(node_min):
markn92's avatar
markn92 committed
            # Create SoC Profile for getting from minimum_node to n
markn92's avatar
markn92 committed
            soc_profile = label_node_min.soc_profile_cs_v + \
                          soc_profile_factory(node_min, n)
markn92's avatar
markn92 committed

markn92's avatar
markn92 committed
            if soc_profile(capacity) != -inf:
markn92's avatar
markn92 committed
                if cf_map[label_node_min.last_cs].is_dummy \
                        and soc_profile.path_cost > label_node_min.soc_last_cs:
                    # Dummy charging stations cannot increase SoC.
                    # Therefore paths that consume more energy than the SoC
                    # when arriving at the (dummy) station are unfeasible.
                    continue

                label_neighbour: Label = Label(
markn92's avatar
markn92 committed
                    t_trip=label_node_min.t_trip + distance(G, node_min, n),
                    soc_last_cs=label_node_min.soc_last_cs,
                    last_cs=label_node_min.last_cs,
markn92's avatar
markn92 committed
                    soc_profile_cs_v=soc_profile
markn92's avatar
markn92 committed
                )
markn92's avatar
markn92 committed
                l_uns[n].insert(label_neighbour)
markn92's avatar
markn92 committed

markn92's avatar
markn92 committed
                # Update queue if entered label is the new minimum label
                # of the neighbour.
markn92's avatar
markn92 committed
                try:
markn92's avatar
markn92 committed
                    is_new_min: bool = label_neighbour == l_uns[n].peak_min()
markn92's avatar
markn92 committed
                except KeyError:
                    continue

markn92's avatar
markn92 committed
                if is_new_min:
markn92's avatar
markn92 committed
                    prio_queue.insert(n, **keys(f_soc_factory(label_neighbour)))
markn92's avatar
markn92 committed


def _setup(G: nx.Graph, charging_stations: Set[Node], capacity: SoC,
           initial_soc: SoC, final_soc: SoC, s: Node, t: Node
           ) -> Tuple[Node, Dict, Dict]:
    """
    Initialises the data structures and graph setup.

    :returns: Tupel(t, factories, queues):
        :t: The new dummy final node taking care of the final SoC.
        :factories: A dict containing factory functions for:
            :```factories['f_soc']```: The SoC Functions
            :```factories['cf']```: The Charging Functions
            :```factories['soc_profile']```: The SoC Profiles
        :queues: A dict containing initialized queues for the algorithm.
            :```queues['settled labels']```:
            :```queues['unsettled labels']```:
            :```queues['priority queue'']```:
    """
    # Add node that is only connected to the final node and takes no time
    # to travel but consumes exactly the amount of energy that should be
    # left at t (final_soc). The node becomes the new final node.
    dummy_final_node: Node = len(G)
    G.add_node(dummy_final_node)
    G.add_edge(t, dummy_final_node, weight=0, c=final_soc)
    t = dummy_final_node

    # Init factories
    cf_map = ChargingFunctionMap(G=G, capacity=capacity, initial_soc=initial_soc)
    f_soc_factory = SoCFunctionFactory(cf_map)
    soc_profile_factory = SoCProfileFactory(G, capacity)

    # Init maps to manage labels
    l_set: Dict[int, List[Label]] = {v: [] for v in G}
    l_uns: Dict[int, LabelPriorityQueue] = {
        v: LabelPriorityQueue(f_soc_factory, l_set[v]) for v in G
    }

    # Add dummy charging station with charging function
    # cf(t) = initial_soc (ie charging coefficient is zero).
    dummy_node: Node = len(G.nodes)
    G.add_node(dummy_node, c=0)
    charging_stations.add(dummy_node)

    # Register dummy charging station as the last
    # seen charging station before s.
    l_uns[s].insert(Label(
        t_trip=0,
        soc_last_cs=initial_soc,
        last_cs=dummy_node,
        soc_profile_cs_v=soc_profile_factory(s)
    ))

    # A priority queue defines which node to visit next.
    # The key is the trip time.
    prio_queue: PriorityQueue = PriorityQueue()
    prio_queue.insert(s, priority=0, count=0)

    return (t,  # New final Node
            {  # factories
                'f_soc': f_soc_factory,
                'cf': cf_map,
                'soc_profile': soc_profile_factory
            },
            {  # queues
                'settled labels': l_set,
                'unsettled labels': l_uns,
                'priority queue': prio_queue
            }
            )